

Lecture Notes in Computer Science 5130
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Joachim von zur Gathen
José Luis Imaña
Çetin Kaya Koç (Eds.)

Arithmetic
of Finite Fields

2nd International Workshop, WAIFI 2008
Siena, Italy, July 6–9, 2008
Proceedings

13

Volume Editors

Joachim von zur Gathen
B-IT, Universität Bonn
Dahlmannstr. 2
53113 Bonn, Germany
E-mail: gathen@bit.uni-bonn.de

José Luis Imaña
Complutense University
28040 Madrid, Spain
E-mail: jluimana@dacya.ucm.es

Çetin Kaya Koç
Istanbul Chamber of Commerce
34112 Istanbul, Turkey,
E-mail: koc@cryptocode.net

Library of Congress Control Number: 2008929536

CR Subject Classification (1998): E.4, I.1, E.3, G.2, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69498-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69498-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12323364 06/3180 5 4 3 2 1 0

Preface

These are the proceedings of WAIFI 2008, the second workshop on the Arith-
metic of Finite Fields, that was held in Siena, Italy, July 6-9, 2008. The first
workshop, WAIFI 2007, which was held in Madrid (Spain), was received quite
enthusiastically by mathematicians, computer scientists, engineers and physicists
who are performing research on finite field arithmetic. We believe that there is
a need for a workshop series bridging the gap between the mathematical theory
of finite fields and their hardware/software implementations and technical ap-
plications. We hope that the WAIFI workshop series, which from now on will be
held on even years, will help to fill this gap.

There were 34 submissions to WAIFI 2008, of which the Program Committee
selected 16 for presentation. Each submission was reviewed by at least three
reviewers. Our thanks go to the Program Committee members for their many
contributions and hard work. We are also grateful to the external reviewers listed
below for their expertise and assistance in the deliberations. In addition to the
contributions appearing in these proceedings, the workshop program included
an invited lecture given by Amin Shokrollahi.

Special compliments go out to Enrico Martinelli, General Co-chair, and to
Roberto Giorgi and Sandro Bartolini, local organizers of WAIFI 2008, who
brought the workshop to Siena, one of the most beautiful cities of Tuscany, Italy.
WAIFI 2008 was organized by the Dipartimento di Ingegneria dell’Informazione
of the University of Siena, Italy.

The submission and selection of papers were done using the iChair software,
developed at EPFL by Thomas Baignères and Matthieu Finiasz. We also thank
Deniz Karakoyunlu for his help in this matter.

July 2008 Joachim von zur Gathen
José Luis Imaña
Çetin Kaya Koç

Organization

Steering Committee

Claude Carlet University of Paris 8, France
Jean-Pierre Deschamps University Rovira i Virgili, Spain
José Luis Imaña Complutense University of Madrid, Spain
Çetin Kaya Koç Oregon State University, USA
Christof Paar Ruhr University of Bochum, Germany
Jean-Jacques Quisquater Université catholique de Louvain, Belgium
Berk Sunar Worcester Polytechnic Institute, USA
Gustavo Sutter Autonomous University of Madrid, Spain

Executive Committee

General Co-chairs
José Luis Imaña Complutense University of Madrid, Spain
Enrico Martinelli University of Siena, Italy

Program Co-chairs

Joachim von zur Gathen B-IT, University of Bonn, Germany
Çetin Kaya Koç Oregon State University, USA

Financial, Local Arrangements Chairs

Sandro Bartolini University of Siena, Italy
Roberto Giorgi University of Siena, Italy

Publicity Chair

Claude Carlet University of Paris 8, France

Program Committee

Omran Ahmadi University of Waterloo, Canada
Daniel Augot INRIA-Rocquencourt, France
Jean-Claude Bajard University of Montpellier II, France
Luca Breveglieri Politecnico di Milano, Italy
Stephen Cohen University of Glasgow, UK
Ricardo Dahab Universidade Estadual de Campinas, Brazil
Gianluca Dini University of Pisa, Italy
Serdar Erdem Gebze Institute of Technology, Turkey
Joachim von zur Gathen B-IT, University of Bonn, Germany

VIII Organization

Elisa Gorla University of Zürich, Switzerland
Dirk Hachenberger University of Augsburg, Germany
Anwar Hasan University of Waterloo, Canada
Marc Joye Thomson R&D, France
Çetin Kaya Koç Oregon State University, USA
Arjen Lenstra EPFL, Switzerland
Peter Montgomery Microsoft Research, USA
Ferruh Özbudak Middle East Technical University, Turkey
Francesco Pappalardi University of Rome 3, Italy
Francisco Rodŕıguez-Henŕıquez Cinvestav, Mexico
René Schoof University of Rome 2, Italy
Éric Schost University of Western Ontario, Canada
Jamshid Shokrollahi Ruhr University Bochum, Germany
Berk Sunar Worcester Polytechnic Institute, USA
Chris Umans California Institute of Technology, USA
Colin Walter Comodo Research Lab, UK

Referees

A. Barenghi
L. Batina
A. Canteaut
C. Carlet
P. Charpin
N. Courtois
J. Detrey
L. El Aimani
H. Fan
S. Fischer
F. Fontein
P. Gaborit
M. Kaihara

D. Karakoyunlu
A. Karlov
S. Khazaei
C. Lauradoux
D. Loebenberger
M. Macchetti
W. Marnane
F. Morain
C. Negre
M. Nüsken
S. Paul
G. Pelosi
T. Plantard

A. Reyhani-Masoleh
M. Roetteler
G. Saldamlı
J. Sarinay
S. Sarkar
E. Savas
O. Schütze
I. Shparlinski
M. Stam
R. Venkatesan
J. Zumbrägel

Sponsoring Institutions

Microsoft Research.
CINECA - Inter University Computing Centre, Italy
University of Siena, Italy

Table of Contents

Structures in Finite Fields

Interpolation of the Double Discrete Logarithm . 1
Gerasimos C. Meletiou and Arne Winterhof

Finite Dedekind Sums . 11
Yoshinori Hamahata

Transitive q-Ary Functions over Finite Fields or Finite Sets: Counts,
Properties and Applications . 19

Marc Mouffron

Efficient Finite Field Arithmetic

Fast Point Multiplication on Elliptic Curves without Precomputation . . . 36
Marc Joye

Optimal Extension Field Inversion in the Frequency Domain 47
Selçuk Baktır and Berk Sunar

Efficient Finite Fields in the Maxima Computer Algebra System 62
Fabrizio Caruso, Jacopo D’Aurizio, and Alasdair McAndrew

Efficient Implementation and Architectures

Modular Reduction in GF(2n) without Pre-computational Phase 77
M. Knežević, K. Sakiyama, J. Fan, and I. Verbauwhede

Subquadratic Space Complexity Multiplication over Binary Fields with
Dickson Polynomial Representation . 88

M. Anwar Hasan and Christophe Negre

Digit-Serial Structures for the Shifted Polynomial Basis Multiplication
over Binary Extension Fields . 103

Arash Hariri and Arash Reyhani-Masoleh

Classification and Construction of Mappings over
Finite Fields

Some Theorems on Planar Mappings . 117
Gohar M. Kyureghyan and Alexander Pott

X Table of Contents

Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings from the
Point of DDT and LAT Distributions . 123

Bora Aslan, M. Tolga Sakalli, and Ercan Bulus

EA and CCZ Equivalence of Functions over GF (2n) 134
K.J. Horadam

Codes and Cryptography

On the Number of Two-Weight Cyclic Codes with Composite
Parity-Check Polynomials . 144

Gerardo Vega

On Field Size and Success Probability in Network Coding 157
Olav Geil, Ryutaroh Matsumoto, and Casper Thomsen

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 174
Sylvain Duquesne

On Cryptographically Significant Mappings over GF(2n) 189
Enes Pasalic

Author Index . 205

Interpolation of the Double Discrete Logarithm

Gerasimos C. Meletiou1 and Arne Winterhof2

1 A.T.E.I. of Epirus
P.O. Box 110, GR 47100,

Arta, Greece
gmelet@teiep.gr

2 Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

Altenbergerstr. 69, 4040 Linz, Austria
arne.winterhof@oeaw.ac.at

Abstract. The double discrete logarithm has attracted interest as a one-
way function in cryptography, in particular in group signature schemes and
publicly verifiable secret sharing schemes. We obtain lower bounds on the
degrees of polynomials interpolating the double discrete logarithm in mul-
tiplicative subgroups of a finite field and in the group of points on an elliptic
curve over a finite field, respectively. These results support the assumption
of hardness of the double discrete logarithm if the parameters are properly
chosen. Similar results for other cryptographic one-way functions including
the discrete logarithm, the Diffie-Hellmann mapping and related functions
as well as functions related to the integer factoring problem have already
been known to the literature. The investigations on the double discrete log-
arithm in this paper are motivated by these results on other cryptographic
functions.

Keywords: double discrete logarithm, interpolation polynomials, finite
fields, elliptic curves.

1 Introduction

Let G be a cyclic group of order t generated by an element g. We identify the
residue class ring ZZt of order t with the set of integers {0, 1, . . . , t − 1}. Let
h ∈ ZZ∗

t an element of order m. For 0 ≤ x < m the double discrete logarithm
ddl(z) of an element z = ghx ∈ G is defined as ddl(z) = x.

The parameters G, t, g and h should be chosen such that computing discrete
logarithms in G to the base g and in ZZ∗

t to the base h are infeasible.
The double discrete logarithm is used as a one-way function in several crypto-

graphic schemes, in particular in group signature schemes and publicly verifiable
secret sharing schemes, see [3, 4, 8, 9, 10, 12, 17, 19, 25, 37, 38, 39].

In this note we consider two important classes of groups G,

1. multiplicative subgroups of order t of a finite field IFq with q elements,
2. groups of points on elliptic curves over a finite field IFq generated by a point

of order t.

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 1–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 G.C. Meletiou and A. Winterhof

For these two kinds of groups we show that there are no low degree interpo-
lation polynomials of the double discrete logarithm for a large set of given data
if the parameters are properly chosen. These results support the assumption of
hardness of the double discrete logarithm.

The investigations of this paper are motivated by similar results on functions
related to the discrete logarithm and the integer factoring problem, respectively.
See the monograph [35] and the series of papers [1,2,6,7,11,13,14,15,21,22,23,
24, 26, 27, 28, 30, 31, 32, 33, 40, 41].

2 Subgroups of Finite Prime Fields

We start with the case where G is a subgroup of the multiplicative group of the
finite field IFp where p is a prime with p > 5.

Theorem 1. Let t ≥ 3 be an integer, p be a prime with p ≡ 1 mod t, g ∈ IF∗
p an

element of order t, h ∈ ZZ∗
t an element of order m ≥ 2 and S ⊆ {0, 1, . . . , m− 1}

a set of order |S| = m− s. Let f(X) ∈ IFp[X] be a polynomial satisfying

f
(
ghn

)
= n, n ∈ S,

then we have
deg(f) ≥ m− 2s

2v
,

where v is the smallest integer in the set {hn mod t : 1 ≤ n < m}.
Proof. Define y by v = hy and 1 ≤ y < m, and consider the set

R = {n ∈ S : (n + y mod m) ∈ S}.
Obviously we have

|R| ≥ |S| − s = m− 2s.

For n ∈ R we have

f(gvhn

) = f(ghn+y

) = n + y + δ = f(ghn

) + y + δ

with δ ∈ {0,−m}. Hence, one of the two polynomials

Fδ(X) = f(Xv)− f(X)− y − δ, δ ∈ {0,−m},
of degree deg(F) = v deg(f) has at least |R|/2 zeros and we get

deg(f) =
deg(F)

v
≥ |R|

2v
≥ m− 2s

2v
,

which completes the proof. �

Remark. In the probably most important case when t is a prime, see e.g. [37,38],
and m is large, i.e. m = (t− 1)/d with a small d, we have v ≤ 2d. For the case

Interpolation of the Double Discrete Logarithm 3

d = 2 of [37, 38], v is the smallest quadratic residue modulo t larger than 1, i.e.
v = 2 if t ≡ ±1 mod 8, v = 3 if t ≡ ±11 mod 24 and v = 4 if t ≡ ±3 or±5 mod 24
by the quadratic reciprocity law and its supplement. In general we trivially have
v ≤ h. Moreover, unless m is very small we have v = o(m), see [16]. For example,
if t is prime and m ≥ t1/2 then v = O

(
t34/37+ε

)
, see [18, Theorem 7.10].

3 Subgroups of Arbitrary Finite Fields

Now let q = pr ≡ 1 mod t be a power of a prime p. For m ≤ p the bound of
Theorem 1 is still valid. However, for m > p we lose information since we consider
the double discrete logarithm modulo p. A compensation for the interpolation
polynomial of the double discrete logarithm is the function defined in the sequel.

Let {β1, . . . , βr} be a basis of IFq over IFp. Then for n ≥ 0 we define ξn ∈ IFq

by
ξn = n1β1 + . . . + nrβr

if
n ≡ n1 + . . . + nrp

r−1 mod q, 0 ≤ n1, . . . , nr < p.

Then instead of the double discrete logarithm we consider the mapping

ddl∗(ghn

) �→ ξn, 0 ≤ n < m.

Theorem 2. Let t ≥ 3 be an integer, p be a prime and r an integer such that
q = pr ≡ 1 mod t, g ∈ IF∗

q an element of order t, h ∈ ZZ∗
t an element of order

m ≥ 2 and S ⊆ {0, 1, . . . , m− 1} a set of order |S| = m− s. Let f(X) ∈ IFq[X]
be a polynomial satisfying

f
(
ghn

)
= ξn, n ∈ S,

then we have

deg(f) ≥ max
{

m− 2s

2lv
,
m− 4s

2h

}
,

where l = 	logp(m)
 and v is the smallest integer in the set {hn mod t : 1 ≤ n <
m}.

Proof. First we proceed as in the proof of Theorem 1 and use the same notation.
For n ∈ R we have

f(gvhn

) = ξn+y+δ = ξn + ω = f(ghn

) + ω

for at most 2l different elements ω ∈ IFq, where δ = 0 if n + y < m and δ = −m
otherwise.

More precisely, if δ = 0 then we have n + y < m < q. Let

n = n0 + n1p + . . . + nl−1p
l−1, y = y0 + y1p + . . . + yl−1p

l−1

4 G.C. Meletiou and A. Winterhof

and
n + y = z0 + z1p + . . . + zl−1p

l−1

with 0 ≤ n0, n1, . . . , nl−1, y0, y1, . . . , yl−1, z0, z1, . . . , zl−1 < p be the p-adic ex-
pansions of n, y and n + y. Put k0 = kl = 0 and

kj =
{

0 if nj−1 + yj−1 + kj−1 < p,
1 otherwise, where j = 1, 2, . . . , l − 1.

Then we have

zj = nj + yj + kj − kj+1p, j = 0, . . . , l − 1.

Hence, we have ω = ξy + ξk where k = k1p + . . . + kl−1p
l−1 and there are at

most 2l−1 possible ω.
If δ = −m we get similarly

ξn = ξ(n+y−m)+(m−y) = ξn+y−m + ξm−y + ξk

for at most 2l−1 different k and thus ξn+y+δ = ξn + ω with ω = −ξm−y − ξk.
Hence at least one of the 2l polynomials Fω(X) = f(Xv) − f(X) − ω has

at least |R|/2l zeros and thus v deg(f) = deg(Fω) ≥ |R|/2l and the first result
follows.

Similarly, we see that

f(ghn+1
) = ξn+1 = ξn + ξ1 = f(ghn

) + ξ1

for all n ∈ S with n + 1 ∈ S and n �≡ −1 mod p. Hence, the polynomial

F (X) = f(Xh)− f(X)− 1

of degree equal to h deg(f) has at least(
1− 1

p

)
m− 2s ≥ m

2
− 2s

zeros and the second result follows. �

Remark. Note that the first bound deg(f) ≥ (m− 2s)/(2lv) is only strong if p is
large and trivial for p = 2. In this particularly interesting case only the second
bound deg(f) ≥ (m− 4s)/(2h) applies.

4 Elliptic Curves

Let E be an elliptic curve over the finite field IFq defined by the Weierstraß
equation

E : Y 2 + h(X)Y = f(X)

Interpolation of the Double Discrete Logarithm 5

with a linear polynomial

h(X) = a1X + a3, a1, a3 ∈ IFq,

and a cubic polynomial

f(X) = X3 + a2X
2 + a4X + a6, a2, a4, a6 ∈ IFq,

such that over the algebraic closure IFq there are no solutions (x, y) ∈ IFq
2

simultaneously satisfying the equations

y2 + h(x)y = f(x), 2y + h(x) = 0, and h′(x)y = f ′(x).

In odd characteristic we may assume Y 2 = f(X) and in even characteristic
h(X) = X or h(X) = 1. The latter case corresponds to supersingular curves. We
denote by O the point at infinity.

We restrict ourselves to the two important cases where q = p > 3 is a prime
and where q = 2r and the curve is not supersingular.

4.1 Elliptic Curves over Fields of Prime Order

For an elliptic curve over IFp with p > 3 we can assume that E is defined by an
equation of the form

E : Y 2 = X3 + aX + b, a, b ∈ IFp.

We recall some basic facts on division polynomials (see e. g. [5,20,29,34,36]).
The division polynomials ψv(X, Y) ∈ IFp[X, Y]/(Y 2 −X3 − aX − b), v ≥ 0, are
recursively defined by

ψ0 = 0,

ψ1 = 1,

ψ2 = 2Y,

ψ3 = 3X4 + 6aX2 + 12bX − a2,

ψ4 = 4Y (X6 + 5aX4 + 20bX3 − 5a2X2 − 4abX − 8b2 − a3),
ψ2k+1 = ψk+2ψ

3
k − ψ3

k+1ψk−1, k ≥ 2,

ψ2k = ψk(ψk+2ψ
2
k−1 − ψk−2ψ

2
k+1)/(2Y), k ≥ 3,

where ψv is an abbreviation for ψv(X, Y). If v is odd then ψv(X, Y) ∈ IFp[X] is
univariate and ψv(X, Y) ∈ Y IFp[X] if v is even. Therefore, as Y 2 = X3 +aX +b,
we have ψ2

v(X, Y), ψv−1(X, Y)ψv+1(X, Y) ∈ IFp[X]. In particular, we may write
ψv−1ψv+1(X) and ψ2

v(X).
The division polynomials can be used to determine multiples of a point. Let

P = (x, y) �= O, then the first coordinate of vP is given by

θv(x)
ψ2

v(x)
, where θv(X) = Xψ2

v(X)− ψv−1ψv+1(X).

6 G.C. Meletiou and A. Winterhof

The zeros of the denominator ψ2
v(X) are exactly the first coordinates of the

nontrivial v-torsion points, i. e., the points Q = (x, y) ∈ IFp
2

on E with vQ =
O. The x-coordinates of a v-torsion point Q cannot be a zero of θv(X) since
otherwise the x-coordinate of vQ would be 0 in contradiction to vQ = O.

We recall that the degree of ψ2
v(X) is v2 − 1 if p � |v. The polynomial θv(X) ∈

IFp[X] is monic of degree v2.

Theorem 3. Let p > 3 be a prime, E an elliptic curve over IFp and P a point
on E of prime order t. For 1 ≤ k ≤ t − 1 let the first coordinate of kP be
denoted by xk. Let h ∈ ZZ∗

t be an element of order m ≥ 2 and let S be a subset
of {0, 1, . . . ,min{m, p} − 1} of cardinality m− s. Let F (X) ∈ IFp[X] satisfy

F (xhn) = n, n ∈ S,

then we have
deg(F) ≥ 1

4 · 22(t−1)/m
(min{m, p} − 2s) .

Proof. Note that xk = xk′ if and only if k ≡ ±k′ mod t. (There are at most two
points on E with the same first coordinate. These two points add to O.) Hence,
if m is odd all xhn for 0 ≤ n ≤ m− 1 are different and if m is even exactly two
elements xhn = xhn+m/2 coincide for 0 ≤ n ≤ m/2− 1.

Obviously, for v ≡ 2(t−1)/m mod t the first coordinate xv of vP has a unique
representation with v = hn0 and 1 ≤ n0 ≤ m−1 if m is odd or 1 ≤ n0 ≤ m/2−1
if m is even. The subset R of S defined by

R = {n ∈ S : (n + n0 mod m) ∈ S}
has cardinality at least

|R| ≥ |S| − s = min{m, p} − 2s.

Put d = deg(F). Using the polynomials ψ2
v(X) and θv(X) defined above we get

for n ∈ R,

F

(
θv(xhn)
ψ2

v(xhn)

)
= F (xvhn) = n + n0 + δ = F (xhn) + n0 + δ,

where δ ∈ {0,−m}. Finally, we consider the polynomials

Uδ(X) = ψ2d
v (X)(F

(
θv(X)
ψ2

v(X)

)
− F (X)− n0 − δ).

Let α ∈ IFp be a zero of ψ2
v(X) and thus not a zero of θv(X). Then we have

Uδ(α) = adθv(α) �= 0,

where ad is the leading coefficient of F (X). Thus Uδ(X) is not identical to zero
and has deg(Uδ) ≤ v2d. At least one of the polynomials Uδ(X) has at least |R|/4
zeros and we get d ≥ deg(Uδ)/v2 ≥ |R|/(4v2) and thus the result. �

Interpolation of the Double Discrete Logarithm 7

Remark. Note that by the Hasse-Weil Theorem we have m < t ≤ p + 1 + 2p1/2

and the only case when m > p is possible is m = t − 1 ≥ p. However, even in
this case only at most O(m1/2) function values of the double discrete logarithm
are not considered in the theorem.

4.2 Non-supersingular Elliptic Curves over Finite Fields of
Characteristic 2

As in Section 3 we have to deal with IF2r in a different way.
We consider a non-supersingular elliptic curve over IF2r defined by an equation

of the form
Y 2 + XY = X3 + aX2 + b.

The division polynomials ψv(X) ∈ IF2r [X] are defined by

ψ0 = 0,

ψ1 = 1,

ψ2 = X,

ψ3 = X4 + X3 + b,

ψ4 = X6 + bX2,

ψ2k+1 = ψk+2ψ
3
k + ψ3

k+1ψk−1, k ≥ 2,

ψ2k = ψk(ψk+2ψ
2
k−1 + ψk−2ψ

2
k+1)/X, k ≥ 3.

The degree of ψv is obviously (v2 − 1)/2 if v is odd and at most (v2 − 2)/2 if v
is even. For P = (x, y) �= O, the first coordinate of vP is given by

x +
ψv−1(x)ψv+1(x)

ψv(x)2
.

Theorem 4. Let E be a non-supersingular curve over IF2r and P a point on E
of order t. For 1 ≤ k ≤ t− 1 let the first coordinate of kP be denoted by xk. Let
h ∈ ZZ∗

t be an element of order m ≥ 2 and let S be a subset of {0, 1, . . . , m− 1}
of cardinality m− s. Let F (X) ∈ IFp[X] satisfy

F (xhn) = ξn, n ∈ S,

then we have
deg(F) ≥ m− 4s

2h2
.

Proof. We proceed as in the previous proofs and use the same notation. We have

F

(
xhn +

ψh−1(xhn)ψh+1(xhn)
ψh(xhn)2

)
= F (xhn+1) = ξn+1 = ξn + ξ1

for all n ∈ S with n + 1 ∈ S and n ≡ 0 mod 2. Put d = deg(F). Hence the
polynomial

U(X) = ψh(X)2d

(
F

(
X +

ψh−1(X)ψh+1(X)
ψh(X)2

)
− F (X)− ξ1

)
of degree h2d has at least m/2− 2s zeros and the result follows. �

8 G.C. Meletiou and A. Winterhof

Acknowledgments

The second author was supported by the Austrian Science Fund FWF under
research grant P19004-N18. The paper was partially written during a visit of
the first author to RICAM. He wishes to express his gratitude to the Austrian
Academy of Sciences for the hospitality.

References

1. Adelmann, C., Winterhof, A.: Interpolation of functions related to the integer
factoring problem. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 144–154.
Springer, Heidelberg (2006)

2. Aly, H., Winterhof, A.: Polynomial representations of the Lucas logarithm. Finite
Fields Appl. 12(3), 413–424 (2006)

3. Ateniese, G., Tsudik, G.: Some open issues and new directions in group signa-
tures. In: Franklin, M. (ed.) FCT 1999. LNCS, vol. 1684, pp. 196–211. Springer,
Heidelberg (1999)

4. Ateniese, G., Song, D., Tsudik, G.: Quasi efficient revocation group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003)

5. Blake, I.F., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Reprint of
the 1999 original. London Mathematical Society Lecture Note Series, vol. 265.
Cambridge University Press, Cambridge (2000)

6. Brandstätter, N., Lange, T., Winterhof, A.: On the non-linearity and sparsity of
Boolean functions related to the discrete logarithm in finite fields of characteristic
two. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 135–143. Springer,
Heidelberg (2006)

7. Brandstätter, N., Winterhof, A.: Approximation of the discrete logarithm in finite
fields of even characteristic by real polynomials. Arch. Math. (Brno) 42(1), 43–50
(2006)

8. Bussard, L., Roudier, Y., Molva, R.: Untraceable secret credentials: trust establish-
ment with privacy. Pervasive Computing and Communications Workshops, 2004.
In: Proceedings of the Second IEEE Annual Conference, March 14-17, 2004, pp.
122–126 (2004)

9. Camenisch, J.: Group signature schemes and payment systems based on the discrete
logarithm problem. Phd-thesis, ETH Zürich, Diss. ETH No. 12520 (1998)

10. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

11. Coppersmith, D., Shparlinski, I.: On polynomial approximation of the discrete
logarithm and the Diffie-Hellman mapping. J. Cryptology 13(3), 339–360 (2000)

12. Elkamchouchi, H.M., Nasr, M.E., Esmail, R.: New public key techniques based on
double discrete logarithm problem. Radio Science Conference, 2004. NRSC 2004.
In: Proceedings of the Twenty-First National, vol. C23, pp. 1–9 (2004)

13. El Mahassni, E., Shparlinski, I.E.: Polynomial representations of the Diffie-Hellman
mapping. Bull. Austral. Math. Soc. 63, 467–473 (2001)

14. Kiltz, E., Winterhof, A.: Lower bounds on weight and degree of bivariate polyno-
mials related to the Diffie-Hellman mapping. Bull. Austral. Math. Soc. 69, 305–315
(2004)

Interpolation of the Double Discrete Logarithm 9

15. Kiltz, E., Winterhof, A.: Polynomial interpolation of cryptographic functions re-
lated to Diffie-Hellman and discrete logarithm problem. Discrete Appl. Math. 154,
326–336 (2006)

16. Korobov, N.M.: The distribution of digits in periodic fractions. Mat. Sb.
(N.S.) 89(131), 654–670, 672 (1972) (Russian)

17. Konoma, C., Mambo, M., Shizuya, H.: The computational difficulty of solving
cryptographic primitive problems related to the discrete logarithm problem. IE-
ICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences E88-A(1), 81–88 (2005)

18. Konyagin, S.V., Shparlinski, I.E.: Character Sums with Exponential Functions and
Their Applications. Cambridge Tracts in Mathematics, vol. 136. Cambridge Uni-
versity Press, Cambridge (1999)

19. Kula, M.A.: A cryptosystem based on double exponentiation. Tatra Mt. Math.
Publ. 25, 67–80 (2002)

20. Lang, S.: Elliptic Curves: Diophantine Analysis. Springer, Berlin (1978)
21. Lange, T., Winterhof, A.: Polynomial Interpolation of the Elliptic Curve and XTR

Discrete Logarithm. In: Ibarra, H.O., Zhang, L. (eds.) COCOON 2002. LNCS,
vol. 2387, pp. 137–143. Springer, Heidelberg (2002)

22. Lange, T., Winterhof, A.: Incomplete character sums over finite fields and their
application to the interpolation of the discrete logarithm by Boolean functions.
Acta Arith. 101, 223–229 (2002)

23. Lange, T., Winterhof, A.: Interpolation of the discrete logarithm in Fq by Boolean
functions and by polynomials in several variables modulo a divisor of q − 1. In:
International Workshop on Coding and Cryptography (WCC 2001), Paris (2001);
Discrete Appl. Math. 128, 193–206 (2003)

24. Lange, T., Winterhof, A.: Interpolation of the elliptic curve Diffie-Hellman map-
ping. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS,
vol. 2643, pp. 51–60. Springer, Heidelberg (2003)

25. Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution
to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197.
Springer, Heidelberg (1998)

26. Meidl, W., Winterhof, A.: A polynomial representation of the Diffie-Hellman map-
ping. Appl. Algebra Engrg. Comm. Comput. 13, 313–318 (2002)

27. Meletiou, G.C.: Explicit form for the discrete logarithm over the field GF(p, k).
Arch. Math. (Brno) 29, 25–28 (1993)

28. Meletiou, G.C., Mullen, G.L.: A note on discrete logarithms in finite fields. Appl.
Algebra Engrg. Comm. Comput. 3(1), 75–78 (1992)

29. Menezes, A.: Elliptic curve public key cryptosystems. Communications and In-
formation Theory. The Kluwer International Series in Engineering and Computer
Science, vol. 234. Kluwer Academic Publishers, Boston (1993)

30. Mullen, G.L., White, D.: A polynomial representation for logarithms in GF(q).
Acta Arith. 47(3), 255–261 (1986)

31. Niederreiter, H.: A short proof for explicit formulas for discrete logarithms in finite
fields. Appl. Algebra Engrg. Comm. Comput. 1(1), 55–57 (1990)

32. Niederreiter, H., Winterhof, A.: Incomplete character sums and polynomial inter-
polation of the discrete logarithm. Finite Fields Appl. 8(2), 184–192 (2002)

33. Satoh, T.: On degree of polynomial interpolations related to elliptic curve cryptog-
raphy. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 155–163. Springer,
Heidelberg (2006)

34. Schoof, R.: Elliptic curves over finite fields and the computation of square roots
mod. p. Math. Comp. 44, 483–494 (1985)

10 G.C. Meletiou and A. Winterhof

35. Shparlinski, I.E.: Cryptographic Applications of Analytic Number Theory. Com-
plexity Lower Bounds and Pseudorandomness. Progress in Computer Science and
Applied Logic, vol. 22. Birkhäuser Verlag, Basel (2003)

36. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate texts in mathematics,
vol. 106. Springer, Heidelberg (1986)

37. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

38. Tso, R., Okamoto, T., Okamoto, E.: Practical strong designated verifer signature
schemes based on double discrete logarithms. In: Feng, D., Lin, D., Yung, M. (eds.)
CISC 2005. LNCS, vol. 3822, pp. 113–127. Springer, Heidelberg (2005)

39. Wang, G., Qing, S.: Security flaws in several group signatures proposed by Popescu.
In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y.,
Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 711–718. Springer,
Heidelberg (2005)

40. Winterhof, A.: A note on the interpolation of the Diffie-Hellman mapping. Bull.
Austral. Math. Soc. 64, 475–477 (2001)

41. Winterhof, A.: Polynomial interpolation of the discrete logarithm. Des. Codes
Cryptogr. 25, 63–72 (2002)

Finite Dedekind Sums

Yoshinori Hamahata�

Department of Mathematics
Tokyo University of Science, Noda, Chiba, 278-8510, Japan

hamahata yoshinori@ma.noda.tus.ac.jp

Abstract. In this paper, we introduce Dedekind sums associated to lat-
tices defined over finite fields. We establish the reciprocity law for them.

Keywords: Dedekind sums, lattices, Drinfeld modules.

1 Introduction

This paper is concerned with Dedekind sums in finite characteristic.
Let c > 0, a be relatively prime rational integers. The classical Dedekind sum

is defined as

s(a, c) =
c−1∑
k=1

a

c

(〈
ak

c

〉
− 1

2

)
,

where 〈x〉 is a real number such that x− 〈x〉 ∈ ZZ and 0 ≤ 〈x〉 < 1. One knows
some basic properties for s(a, c):

(1) s(−a, c) = −s(a, c).
(2) If a ≡ a′(mod c), then s(a, c) = s(a′, c).
(3)(Reciprocity law) If a, c > 0 are coprime, then

s(a, c) + s(c, a) =
a2 + c2 − 3ac + 1

12ac
.

The Dedekind sum s(a, c) can be written as

s(a, c) =
1
4c

c−1∑
k=1

cot
k

c
π cot

ak

c
π.

Sczech [8] established analogue of Dedekind sums with elliptic functions by re-
placing cotπx by elliptic functions. In 1989, Okada [6] introduced Dedekind sums
for function fields. His idea comes from Sczech’s result. In function fields, there
exist exponential functions attached to lattices, which are related to Drinfeld
modules. These exponential functions are similar to both cotangent and elliptic
functions. In particular, the exponential function related to the Carlitz module
� Partially supported by Grant-in-Aid for Scientific Research (No. 18540050), Japan

Society for the Promotion of Science.

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 11–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 Y. Hamahata

(this is a rank one Drinfeld module) play the same role as the classical expo-
nential function. From this observation, he replaced cotangent functions by that
exponential to define Dedekind sums for function fields. In [6], he established
the reciprocity law for those Dedekind sums. Inspired by Okada’s result, we in-
troduce in [5] Dedekind sums for finite fields. In this exposition, we generalize
Dedekind sums defined in the previous paper [5] to introduce Dedekind sums
associated to lattices defined over finite fields. The main result is the reciprocity
law for those Dedekind sums. The plan of the paper is as follows. In section
two, we give some facts needed later. In section three, we introduce Dedekind
sums associated to lattices. In section four, we present the reciprocity law for
our Dedekind sums. This result will be proved in the last section.

Notations
K = IFq: the finite field with q elements
K: a fixed algebraic closure of K∑′: the sum over non-zero elements∏′: the product over non-zero elements

2 Lattices

In this section we gather some results on lattices needed later.
A lattice Λ in K means a linear K-subspace in K of finite dimension. For such

a lattice Λ, we define the Euler product

eΛ(z) = z
∏
λ∈Λ

′ (
1− z

λ

)
.

The product defines a map eΛ : K → K. The map eΛ has the following proper-
ties:
• eΛ is K-linear and Λ-periodic.
• If dimK Λ = r, then eΛ(z) has the form

eΛ(z) =
r∑

i=0

αi(Λ)zqi

, (1)

where α0(Λ) = 1, αr(Λ) �= 0.
• eΛ has simple zeros at the points of Λ, and no other zeros.
• deΛ(z)/dz = e′Λ(z) = 1. Hence we have

1
eΛ(z)

=
e′Λ(z)
eΛ(z)

=
∑
λ∈Λ

1
z − λ

. (2)

We recall Newton formula for power sums of the zeros of a polynomial.

Proposition 1 (Newton formula cf. [3]). Let

f(X) = Xn + c1X
n−1 + · · ·+ cn−1X + cn

Finite Dedekind Sums 13

be a polynomial, and α1, . . . , αn the roots of f(X). For each nonnegative integer
k, put

Tk = αk
1 + · · ·+ αk

n.

Then

Tk + c1Tk−1 + · · ·+ ck−1T1 + kck = 0 (k ≤ n),
Tk + c1Tk−1 + · · ·+ cn−1Tk−n+1 + cnTk−n = 0 (k ≥ n).

Using this formula, we have

Proposition 2. Let Λ be a lattice in K, and take a non-zero element a ∈ K.
For m = 1, 2, . . . , q − 2, we have

am

eΛ(az)m
=

∑
x∈Λ

1
(z − x/a)m

.

Proof. Let dimK Λ = r. We prove it by induction on m. First let us prove the
case m = 1. The set of the roots of eΛ(az) is {x/a | x ∈ Λ}. By (2), we have

a

eΛ(az)
=

∑
x∈Λ

1
z − x/a

.

Suppose that the claim holds for m− 1. The polynomial eΛ(a(z − 1/X))Xqr

in
the variable X has {1/(z − x/a) | x ∈ Λ} as its roots. We can easily see that

eΛ(a(z − 1/X))Xqr

= eΛ(az)Xqr −
r∑

i=0

aiαi(Λ)Xqr−qi

.

Put Tm =
∑

x∈Λ 1/(z − x/a)m. Applying Newton formula to

eΛ(az)−1eΛ(a(z − 1/X))Xqr

= Xqr −
r∑

i=0

eΛ(az)−1aiαi(Λ)Xqr−qi

,

we get
Tm − a

eΛ(az)
Tm−1 = 0

for m = 1, . . . , q − 2. Therefore the claim holds for m. ��
For b ∈ K − {0}, we set

R(b) = {λ/b | λ ∈ Λ} − {0}.
Lemma 1 ∑

x∈R(b)

x−m =
{

0 (m = 1, . . . , q − 2)
α1(Λ)bq−1 (m = q − 1) ,

where α1(Λ) is as in (1).

14 Y. Hamahata

Proof. The set R(b) consists of the non-zero roots of eΛ(bz). Hence {1/x | x ∈
R(b)} is the set of all roots of

b−1eΛ(bz−1)zqr

=
r∑

i=0

αi(Λ)bqi−1zqr−qi

,

= zqr

+ α1(Λ)bq−1zqr−q + · · · .
Applying Newton formula to this polynomial, we have

Tm = 0 (m = 1, . . . , q − 2),
Tq−1 + (q − 1)α1(Λ)bq−1 = 0.

The last equation yields Tq−1 = α1(Λ)bq−1. ��

3 Finite Dedekind Sums

For a lattice Λ in K, we define Dedekind sum.

Definition 1. Set Λ̃ = {x ∈ K | xλ ∈ Λ for someλ ∈ Λ}. We choose c, a ∈
K − {0} such that a/c �∈ Λ̃. For m = 1, . . . , q − 2, put

sm(a, c)Λ =
1

cm

∑
λ∈Λ

′ (λ

c

)−q+1+m

eΛ

(
aλ

c

)−m

.

Moreover, we define

s0(c)Λ = s0(a, c)Λ =
∑
λ∈Λ

′
(

λ

c

)−q+1

.

We call sm(a, c)Λ the m-th Dedekind sum for Λ.

Remark 1. In [5], we defined the Dedekind sum for Λ = K. Our definition gen-
eralizes it.

It follows from Lemma 1 that

s0(c)Λ = s0(a, c)Λ = α1(Λ)cq−1,

where α1(Λ) is the coefficient of zq in eΛ(z) as in (1).
The following result is analogous to the properties (1), (2) of the classical

Dedekind sums in section one.

Proposition 3. Dedekind sums sm(a, c)Λ (m = 1, . . . , q−1) satisfy the follow-
ing properties:
(1) For any α ∈ K∗, sm(αa, c)Λ = α−msm(a, c)Λ.
(2) If a, a′ ∈ K satisfy a− a′ ∈ cΛ, then sm(a, c)Λ = sm(a′, c)Λ.

Proof. (1), (2) Immediate from the properties of eΛ(z). ��

Finite Dedekind Sums 15

4 Reciprocity Law

In this section we present the reciprocity law for our Dedekind sums. Let a, c be
the elements of K − {0} such that a/c �∈ Λ̃.

Theorem 1 (Reciprocity law I). For m = 1, . . . , q − 2, we have

sm(a, c)Λ + (−1)m−1sm(c, a)Λ =
m−1∑
r=1

(−1)m−rsm−r(c, a)Λ

arcr
·
(

m + 1
r

)
+

s0(c)Λ + m · s0(a)Λ

amcm
.

We will prove it in the next section. As a corollary to this result, the next theorem
is obtained.

Theorem 2 (Reciprocity law II). For m = 1, . . . , q − 2, we have

sm(a, c)Λ + (−1)m−1sm(c, a)Λ

=
1
2

{
m−1∑
r=1

(−1)r−1
(
sm−r(a, c)Λ + (−1)m−1sm−r(c, a)Λ

) (
m+1

r

)
arcr

+

(
m + (−1)m−1

) (
s0(a)Λ + (−1)m−1s0(c)Λ

)
amcm

}
.

Proof. By Theorem 1,

sm(a, c)Λ + (−1)m−1sm(c, a)Λ + (−1)m−1
(
sm(c, a)Λ + (−1)m−1sm(a, c)Λ

)
is two times of the right hand side of the equation of the claim. ��
Example 1. Using the notation in the previous section, we have

s1(a, c)Λ + s1(c, a)Λ =
α1(Λ)

(
aq−1 + cq−1

)
ac

,

s3(a, c)Λ + s3(c, a)Λ =
2s2(a, c)Λ + 2s2(c, a)Λ

ac
− α1(Λ)

(
aq−1 + cq−1

)
a3c3

.

In particular, if Λ = K, then eK(z) = z − zq, so that

s1(a, c)K + s1(c, a)K = −aq−1 + cq−1

ac
,

s3(a, c)K + s3(c, a)K =
2s2(a, c)K + 2s2(c, a)K

ac
+

aq−1 + cq−1

a3c3
.

5 Proof of Theorem 1

We need two supplementary facts to prove the theorem.

16 Y. Hamahata

Lemma 2 (Okada [6]). There exists a homogeneous polynomial Hk,m(X, Y)
of degree k + m over K such that

1
Xk

=
m−1∑
r=0

(
k + r − 1

r

)
· (Y −X)r

Y k+r
+ (Y −X)mHk,m (1/X, 1/Y) .

Proof. Since we require knowledge of the construction of Hk,m(X, Y) in the proof
of the next lemma, let us give a proof.

We prove it by induction on m. When m = 1, one has

1
Xk
− 1

Y k
= (Y −X)

(
1

Y Xk
+

1
Y 2Xk−1

+ · · ·+ 1
Y kX

)
.

If we put
Hk,1(X, Y) = XY k + X2Y k−1 + · · ·+ XkY,

then
1

Xk
=

1
Y k

+ (Y −X)Hk,1 (1/X, 1/Y) .

We next assume that the claim holds for natural numbers less than m + 1.
Then there exists a homogeneous polynomial Hl+1,m(X, Y) of degree l + m + 1
satisfying

1
X l+1

=
m−1∑
r=0

(
l + r

r

)
· (Y −X)r

Y l+r+1
+ (Y −X)mHl+1,m (1/X, 1/Y) .

On both side of the above equation, we multiply by 1/Y k−l, take sum
∑k−1

l=0 ,
and multiply by Y −X . Then

1
Xk
− 1

Y k
= (Y −X)

k−1∑
l=0

1
Y k−lX l+1

=
k−1∑
l=0

m−1∑
r=0

(
l + r

r

)
· (Y −X)r+1

Y k+r+1
+ (Y −X)m+1

k−1∑
l=0

1
Y k−l

·Hl+1,m (1/X, 1/Y) .

We see that

Hk,m+1(X, Y) :=
k−1∑
l=0

Y k−lHl+1,m(X, Y)

is a homogeneous polynomial of degree k + m + 1. Using
∑k−1

l=0

(
l+r
r

)
=

(
k+r
r+1

)
,

we have

1
Xk
− 1

Y k
=

m−1∑
r=0

(
k + r

r + 1

)
· (Y −X)r+1

Y k+r+1
+ (Y −X)m+1Hk,m+1 (1/X, 1/Y)

=
m−1∑
r′=1

(
k + r′ − 1

r′

)
· (Y −X)r′

Y k+r′ + (Y −X)m+1Hk,m+1 (1/X, 1/Y) .

(r′ = r + 1)

Hence the claim holds for m + 1. ��

Finite Dedekind Sums 17

Lemma 3

sm(a, c)Λ =
1

amcm

∑
x∈R(c)

∑
y∈R(a)

1
xq−1−m(x− y)m

+
s0(c)Λ

amcm
.

Proof. By Proposition 2, we have

sm(a, c)Λ =
1

amcm

∑
λ∈Λ

′ ∑
μ∈Λ

(λ/c)−q+1+m (λ/c− μ/a)−m

=
1

amcm

∑
x∈R(c)

∑
y∈R(a)∪{0}

x−q+1+m(x− y)−m

=
1

amcm

⎛⎝ ∑
x∈R(c)

x−q+1 +
∑

x∈R(c)

∑
y∈R(a)

x−q+1+m(x− y)−m

⎞⎠ . ��

We are now ready to prove Theorem 1. By Lemma 2, for x ∈ R(c) and y ∈ R(a),

1
xq−1−m

=
m−1∑
r=0

(
q −m + r − 2

r

)
· (y − x)r

yq−1−m+r
+ (y − x)mHq−1−m,m (1/x, 1/y) .

Using
(
q−m+r−2

r

)
= (−1)r

(
m+1

r

)
, we obtain

sm(a, c)Λ − s0(c)Λ

amcm

=
1

amcm

∑
x∈R(c)

∑
y∈R(a)

1
xq−1−m(x− y)m

=
1

amcm

∑
x∈R(c)

∑
y∈R(a)

{
m−1∑
r=0

(−1)r

(
m + 1

r

)
· (y − x)r

yq−1−m+r

+(y − x)mHq−1−m,m (1/x, 1/y)} 1
(x− y)m

=
1

amcm

∑
x∈R(c)

∑
y∈R(a)

{
m−1∑
r=0

(
m + 1

r

)
· (−1)m−r

yq−1−(m−r)(y − x)m−r

+(−1)mHq−1−m,m (1/x, 1/y)}

=
m−1∑
r=0

(
m + 1

r

)
(−1)m−r

(
sm−r(c, a)Λ

arcr
− s0(a)Λ

amcm

)
+

(−1)m

amcm

∑
x∈R(c)

∑
y∈R(a)

Hq−1−m,m (1/x, 1/y) (by Lemma 3)

=
m−1∑
r=0

(−1)m−rsm−r(c, a)Λ

arcr
·
(

m + 1
r

)
− s0(a)Λ

amcm

m−1∑
r=0

(
m + 1

r

)
(−1)m−r

+
(−1)m

amcm

∑
x∈R(c)

∑
y∈R(a)

Hq−1−m,m (1/x, 1/y) .

18 Y. Hamahata

Here note that
∑

x∈R(c)

∑
y∈R(a) Hq−1−m,m (1/x, 1/y) = 0. Indeed, by con-

struction of Hk,m(X, Y) in Lemma 2, Hq−1−m,m(X, Y) is expressed as
Hq−1−m,m(X, Y) =

∑q−2
i=1 aiX

iY q−1−i. By Lemma 1,

∑
x∈R(c)

∑
y∈R(a)

Hq−1−m,m(1/x, 1/y) =
q−2∑
i=1

ai

∑
y∈R(a)

1
yq−1−i

∑
x∈R(c)

1
xi

= 0.

We also note that
∑m−1

r=0

(
m+1

r

)
(−1)m−r = −m. Therefore we get

sm(a, c)Λ =
m−1∑
r=0

(−1)m−rsm−r(c, a)Λ

arcr
·
(

m + 1
r

)
+

s0(c)Λ

amcm
+

m · s0(a)Λ

amcm
.

Finally we transpose the r = 0 term of the right hand side to the left hand side.
This completes the proof.

6 Concluding Remarks

So far, we have taken some steps toward building a theory of Dedekind sums for
finite fields. It would be intriguing to work on the following questions:

• We can define the Dedekind η function for a finite field (cf. Gekeler [2]). Can
we connect it with finite Dedekind sums?
• Can we define higher-dimensional finite Dedekind sums as Zagier did in [10]?

References

1. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory.
Springer, Heidelberg (1990)

2. Gekeler, E.-U.: Finite modular forms. Finite Fields and Their Applications 7, 553–
572 (2001)

3. Goss, D.: The algebraist’s upper half-planes. Bull. Amer. Math. Soc. 2, 391–415
(1980)

4. Goss, D.: Basic Structures of Function Fields. Springer, Heidelberg (1996)
5. Hamahata, Y.: Dedekind sums for finite fields. In: Diophantine Analysis and Re-

lated Fields: DARF 2007/2008. AIP Conference Proceedings, vol. 976, pp. 96–102
(2008)

6. Okada, S.: Analogies of Dedekind sums in function fields. Mem. Gifu Teach.
Coll. 24, 11–16 (1989), http://ci.nii.ac.jp/naid/110004649314/

7. Rademacher, H., Grosswald, E.: Dedekind Sums, The Mathematical Association
of America, Washington (1972)

8. Sczech, R.: Dedekindsummen mit elliptischen Funktionen. Invent. Math. 76, 523–
551 (1984)

9. Serre, J.-P.: Cours d’arithmétique, Presses Universitaires de France, Paris (1970)
10. Zagier, D.: Higher-dimensional Dedekind sums. Math. Ann. 202, 149–172 (1973)

Transitive q-Ary Functions over Finite Fields

or Finite Sets:
Counts, Properties and Applications

Marc Mouffron

EADS Secure Networks, France
marc.mouffron@eads.com

Abstract. To implement efficiently and securely good non-linear func-
tions with a very large number of input variables is a challenge. Partially
symmetric functions such as transitive functions are investigated to solve
this issue. Known results on Boolean symmetric functions are extended
both to transitive functions and to q-ary functions (on any set of q ele-
ments including finite fields GF (q) for any q). In a special case when the
number of variables is n = pk with p prime, an extension of Lucas’ theo-
rem provides new counting results and gives useful properties on the set
of transitive functions. Results on balanced transitive q-ary functions are
given. Implementation solutions are suggested based on q-ary multiple-
valued decision diagrams and examples show simple implementations for
these kind of symmetric functions. Applications include ciphers design
and hash functions design but also search for improved covering radius
of codes.

Keywords: Symmetric functions, (sharply) t-transitive functions, bal-
anced functions, functions over finite fields, hardware and software im-
plementation.

1 Introduction

In information science efficient implementations of functions with a large number
of variables combined with some properties is a challenge. For example, the
choice of good balanced non-linear functions is essential to ensure the quality of a
cryptographic algorithm [16] or to achieve optimality of hash coding function for
data storage and retrieval [13]. It is often a puzzle to implement them efficiently.

Why is a large number of variables needed ? In cryptography, CAMION et al.
[7] gives the trade-off between the correlation order t, the algebraic degree d of
q-ary functions of n variables: d+ t < (q−1).n. The Walsh transform enables to
show that functions have a minimal bound correlation value decreasing with n.
More recent results on algebraic attacks [2,9] require functions with high alge-
braic immunity. Bounds have also been issued on the algebraic immunity with
a given number of variables [2]. MEIER et al. [17] shows that the algebraic im-
munity of random balanced Boolean functions with n variables is almost always
at least equal to 0.22n. So the larger is n, the more choices will be available

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 19–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 M. Mouffron

and better will be their characteristics: t, d, non-linearity or algebraic immunity.
Both restraints and those of analogous properties justify the use of functions
with a lot of input variables.

But the technology restricts the possibilities. The biggest single dice memories
currently available contain 128 Gbits (flash November 2007). This means that, a
Boolean function of not more than 37 input variables, which is rather small, will
fit into the largest available physical memory block. A function with a hundred
input binary or q-ary variables and even more is often desirable. The problem
is developing a technique for the efficient construction of such a q-ary function.
Thus we must choose a complex function, which possesses properties that enable
a straightforward implementation.

The symmetric and partially symmetric q-ary functions represent really good
candidates on this point. Symmetric and transitive functions by their properties
show potential good behaviour as their input variables are not distinguishable,
this is also another reason for their choice. Some authors recommend the symme-
try intrinsically to achieve indistinguishability between all variables. This is an
over requirement as transitivity is sufficient from that point of view and allows
much more varieties. Examples of transitive functions are rotation symmetric
Boolean functions [18,22] or dihedral symmetric Boolean functions [15], that
allow for instance to build bent Boolean functions that are not quadratic con-
trary with bent symmetric Boolean functions that are always quadratic. Lots of
authors have studied Boolean symmetric functions [8,9,14,16,21,22,23] or sym-
metric functions over GF (p) (p prime) [10] and there are actual use in ciphers
implementations such as [3] but the generalization to partially symmetric q-ary
functions when q>2 provides lots of new possibilities. For implementations is-
sues, there are already some works on the partially symmetric Boolean functions
[12] and on the symmetric q-ary functions [5]. These works show that the decision
diagrams are well suited to take benefits of the symmetries and we investigated
this further on with very good solutions for symmetric q-ary functions.

On the one hand the technological implementation is easy both in software and
hardware and on the other hand the properties are relevant. For example some
symmetric functions achieve bound on both constraint of algebraic immunity and
nonlinearity in the Boolean case [14] and also in the q-ary case [2]. Here we study
symmetric and partially symmetric q-ary functions on purpose to use them with a
very large number of variables (possibly up to several hundred). Theoretical and
experimental results are presented with among others the counting of interesting
functions and their constructive design. The applications of t-transitive q-ary
functions and symmetric functions are rather wide:

1. in cryptography for both stream ciphers [3] and block ciphers,
2. in hash functions design for cryptography [18] or for hash coding providing

optimal data storage and retrieval [13],
3. in coding theory to improve results on covering radius.

Current applications use essentially symmetric Boolean functions, but in all these
fields transitive and t-transitive q-ary functions can provide enhancement. This

Transitive q-Ary Functions over Finite Fields or Finite Sets 21

paper is organized as follows. Section 2 presents the definitions. Section 3 intro-
duces the counting results. Section 4 exposes the balance property study with
new functions. Section 5 proposes application of our techniques to cryptography.
Section 6 concludes this paper.

2 Definitions – Notations

Let Eq (Em) be a set of q elements (m elements), noted Eq = {0, .., q−1}. An is
the set of the alternating permutations of En and Sn the set of the permutations
of En. id is the identity permutation. The symmetry groups G are sub-groups
of Sn. C(n, k) is the Binomial coefficient k among n values and the Multinomial
coefficient M(n, r1, . . ., rq) means choices of r1, . . ., rq among n values. gcd(n,q) is
the greatest common divisor of n and q. GF (q) is the Galois Field of q elements.
| S | is the Cardinal of set S. u(Eq) is the cardinal of the group of units in
a ring Eq. (an) = (a, .., a) is the n-tuple whose all coordinates equal a. wa(x)
is the weight of n-tuple x with respect to value a. The characteristic function
associated with element w is noted: χw.

2.1 Definitions on Group Theory and Functions

Definition 1. A function f from En
q onto Em is symmetric if and only if for

every permutation P in Sn: ∀x = (xi) ∈ En
q : f((xP (i))) = f((xi))

Definition 2. A function f from En
q onto Em is invariant under a permuta-

tion P from Sn if and only if: ∀x = (xi) ∈ En
q : f((xP (i))) = f((xi))

The symmetric functions are those invariant under the whole symmetric group
Sn. For any function f, consider the set of all permutations under which f is
invariant, it is a subgroup, Gf , of Sn, called the symmetry group of the function
f. An interesting introduction on the symmetry group for Boolean functions was
done in [19] and most of their lemma have a wider application than just Boolean
functions.

Definition 3. A function f from En
q onto Em is partially symmetric if and

only if its symmetry group Gf is not the identity element singleton.

There are many families of partially symmetric functions, for example:

1. If Gf is isomorphic to Ss, where s <n, then f is said to be an s-over-n
symmetric function.

2. If Gf is An, the Alternating group, then f is said to be an Alternating
function.

3. If Gf is isomorphic to As, where s <n, then f is said to be an s-over-n
Alternating function.

4. If Gf = Cn is the cyclic group, then f is said to be a rotation symmetric
function.

22 M. Mouffron

5. If Gf = Dn is the dihedral group, then f is said to be a dihedral symmetric
function.

6. If Gf = {id, r} is the group of the a reversal r, then f is said to be reversaly
symmetric function.

Definition 4. [6,11] Let G ⊆ S(E) be a group of permutations on a set E, then:

1. The group G is transitive on E, if for every x, y ∈ E there is some g ∈ G
such that g(x) = y.

2. The group G is regular(or sharply transitive) on E, if for every x, y ∈ E
there is exactly one g ∈ G such that g(x) = y.

3. The group G is r-regularly transitive on E, if for every x, y ∈ E the
number of permutations g ∈ G such that g(x) = y is a constant r.

4. The group G is t-transitive on E, if G induces a transitive group on the
set of all ordered tuples of distinct elements from E.

5. The group G is sharply t-transitive set E, if G induces a regular group on
the set of all ordered tuples of distinct elements from E.

As consequences we have the following definitions for functions, by transferring
the properties of the symmetry group acting on the function’s input variables set:

Definition 5. A function f from En
q onto Em is respectively transitive, sharply

transitive, r-regularly transitive, t-transitive, sharply t-transitive if and
only if the symmetry group of f, Gf is respectively a transitive, sharply transi-
tive, r-regularly transitive, t-transitive, sharply t-transitive, group acting
on En.

For example the function F1 is a transitive function but not a symmetric func-
tion: F1 : (x1.x3)⊕ (x3.x2)⊕ (x2.x4)⊕⊕ (xn−1.xn)⊕ (xn.x1). Its sym-
metry group is a cyclic group <(1324 . . . n-1n)>.
The function F2 : (x1.x2) ⊕ (x3.x4) ⊕ (x1.x2.x3) ⊕ (x1.x2.x4) ⊕ (x1.x3.x4) ⊕
(x2.x3.x4) is a transitive function not symmetric. Its symmetry group is a non-
cyclic transitive group <(12)(34), (13)(24)> on {1,2,3,4}.
Symmetric functions are interesting as they achieve indistinguishability globally
on all the input variables. The transitive functions ensure the indistinguisha-
bility between any pair of variables, and the sharply transitive functions are a
kind of maximal set among them. The t-transitive functions offer intermediate
indistinguishability properties. Another driver for this study is that the results
on transitive functions apply to a wide number of different sets of functions.

2.2 Definitions on Partitions

The study of symmetric and partially symmetric functions is closely related to
the theory of partitions. ANDREW has given a survey on that theory [1].

Definition 6. A partition π = (π1, π2, π3, ..., πm) of the integer n in at most
m parts each ≤ b is a non-increasing sequence of nonnegative integers,

b ≥ π1 ≥ π2 ≥ π3 ≥ . . . ≥ πm ≥ 0 such that:
m∑

i=1

πi = N .

Transitive q-Ary Functions over Finite Fields or Finite Sets 23

A partition π can also be represented by the number of repetitions of each

value, π =< 0r01r12r2...brb >. Then:
b∑

i=0

i.ri = Nand
b∑

i=0

ri = m.

Let, Part(b,m,N), be the set of partitions of all integers ≤ n in at most m parts
each ≤ b. For any n-tuple x ∈ En

q , we associate a unique partition of π(x) in
Part(q-1,n,n.(q-1)).

3 Counts on Transitive Functions

3.1 Partitions Counting

ANDREW [1] gives the formula to enumerate the partitions. We have:

Lemma 1 ([1]Theorem 3.1). |Part(b,a,ba) |= C(a+b,a) = C(a+b,b).

3.2 Permutations Groups and Orbits

The number of distinct subsets of size t in a set of size n is n.(n-1)...(n-t+1).
Thus:

Lemma 2. A t-transitive group of degree n has an order divisible by: n.(n-
1)...(n-t+1).

A r-regularly t-transitive group of degree n has order: r.n.(n-1)...(n-t+1).

Lemma 3. (Combinatorics on the orbits): Consider G a group of degree n that
operate on En and by extension also on En

q by applying operation on the sub-
scripts. Then for any a, b in Eq, any x in En

q :

1. For any G then: |x G |≤ |G |.
2. For any G then: |(an) G |= 1.
3. If G is t-transitive then for j<t and x = (ajbn−j);

xG = xSn so |ajbn−j G |= C(n,j).
4. For any G if π(x) =< 0rq1r12r2...q−1rq−1 > then: |x G |≤ M(n,r1,r2,...,rq).

Lemma 4. If G is a transitive group of degree n then:

∀a ∈ Eq ∀x ∈ En
q ∃W ∈ IN / wa(x). |xG| = n.W .

Proof. In the spirit of [20] count values different to a in the matrix M containing
all the n-tuple of xG, the G orbit of x, first on the rows (left hand side) and
secondly on the columns (right hand side).

Each row preserves the a’s and so contains the same number of elements
different to a, wa(x). The number of rows is |xG |. This gives left hand side.

Consider z the first column of M. The number of elements of this first column
different to a is, wa(z). Due to transitivity of f, a permutation g from G of the
columns of M is equivalent to a permutation of the rows of M. For any i there ex-
ists a permutation g from G such that g(i)=1 preserving f. Then:

∑
y∈xG wa(y) =∑

y∈xG(
∑n

i=1 wa(yi)) =
∑

y∈xG(
∑n

i=1 wa(yg(i))) =
∑n

i=1(
∑

y∈xG wa(y1)) =∑n
i=1 wa(z) = n.wa(z).
This gives right hand side with W=wa(z).

24 M. Mouffron

We can immediately deduce some generalization of Lucas’ theorem.

Corollary 1. If G is a transitive group and n = pk with p prime then for any
x �= (an), we have:

1. p divides |xG |
2. n divides |xG |if there exists b such that gcd(p, wb(x)) = 1.

3.3 The n-i Transitive Functions

The set of symmetric functions is not always a proper subset of the partially
symmetric functions sets, due to some Pigeon Hole principle as inputs belong to
the finite set Eq.

Proposition 1. Let suppose q.(i − 1) < n then f is an n-i transitive function
from En

q onto Em (i.e. Gf the symmetry group of f is n-i transitive) if and only
if f is a symmetric function from En

q onto Em.

Proof. Take p ∈ Sn−Gf . Let X = (x1, ..., xn) then as n > q.(i−1) among those
n components xj , one value from Eq is repeated at least i times. Then as Gf

is n-i transitive there exist one permutation u in Gf exchanging the remaining
n-i xj with their images by p, xp(j), and for which f is invariant then : p(X) =
u(X), and, due to transitivity f(u(X))= f(X). So f(p(X))= f(u(X))= f(X) which
means f is invariant under p.

Note: For t > 5 the only t-transitive groups are Sn (n ≥ t) and An (n ≥ t + 2)
so high transitivity does not bring new functions.

3.4 The Symmetric Functions

Proposition 2. The number of symmetric functions from En
q onto Em is:

mC(n+q−1,q−1).

Proof. This results from lemma 1 as each Sn orbits is represented by a partition
of Part(q-1,n,n.(q-1)).

3.5 The Alternating Functions

The Alternating group An of order n!
2 acts transitively on En

q [11].

Proposition 3. The number of Alternating functions from En
q onto Em is:

m(C(n+q−1,q−1)+C(q,n)).

Proof. As an alternating function is n-2 transitive, when q < n, it is also sym-
metric and C(q, n) = 0. Otherwise i.e. when n ≤ q, we partition the orbits in 2
classes.

For any X = (x1, ..., xn) having at least one value repeated twice, say xj and
xk. Take θ ∈ Sn −An. Consider the transposition τ exchanging xj and xk then

Transitive q-Ary Functions over Finite Fields or Finite Sets 25

θ(X) = θoτ(X), and, σ = θoτ ∈ An so f(θ(X)) = f(σ(X)) = f(X). So n-tuple
X have orbits XAn = XSn. There are C(n + q − 1, q − 1)−C(q, n) such orbits.
For n-tuple Y = (y1, ..., yn) with n different values, there are C(q, n) choices for
these n values. Consider any transposition τ , then Sn = An

⋃
τAn and Y Sn =

Y An

⋃
Y τAn, |Y Sn| = n!, |An| = |τAn| = n!

2 , |Y An| ≤ |An| and |Y τAn| ≤
|τAn| so |Y An| = n!

2 . Such n-tuples Y contribute for 2.C(q, n) An orbits.

3.6 The (Sharply) t-Transitive Functions

Proposition 4. Given any sharply transitive permutation group G, the set of
G-sharply transitive functions from En

q onto Em contains between m
qn+q.(n−1)

n

and mqn−(q.(q−1).(n−1)) functions.

Proof. If G is sharply transitive then |G |= n and so for any x in En
q : |xG |≤ n.

From combinatorics of specials orbits we know in particular that |an G |= 1 and
|a1bn−1 G |= n , it remains then more than [(qn−q−n.q.(q−1))/n] other orbits
and less than [qn − q − n.q.(q − 1)]. So this gives; a lower bound of the total
number of orbits : q + q.(q− 1) + [(qn − q− n.q.(q− 1))/n] and an upper bound
of q + q.(q − 1) + [(qn − q − n.q.(q − 1))].

Example : G =
{
ρi/i = 1 to n

}
which generates the rotation symmetric q-ary

functions which dimension exceed [qn + q.(n− 1)]/n. The exact number is given
in 3.7.

These results can be generalized to transitive and t-transitive functions.

Proposition 5. Given any t-transitive permutation group G of size |G |, the set
of G t-transitive functions from En

q onto Em contains between:

m
qn+q.(|G|−1)−q.(q−1).(t

j=1 C(n,j)−t.|G|)
|G| and mqn−q.(q−1).(t

j=1 C(n,j)−t) functions.

Proof. According to lemma 3, for j < t |ajbn−jG |= C(n,j) and |xG |≤ |G |for
other x. This infers lower bound when other orbits have size |G |, and upper
bound when those orbits have size 1.

Proposition 6. Given n=p with p prime and any sharply transitive permutation
group G, the set of G-sharply transitive functions from En

q onto Em contains

exactly m
qn+q.(n−1)

n functions.

Proof. According to corollary 1, if x �= (an) then n = p divides |xG | and |xG
|≤ |G |=n so |xG |= n. So the number of different G-orbits is then exactly:
q + [(qn − q)/n].

3.7 The Rotation Symmetric Functions

As already mentioned rotation symmetric q-ary function are examples of sharply
transitive functions, the cycles index of Cn allows an exact enumeration.

26 M. Mouffron

Proposition 7. The set of rotation symmetric functions from En
q onto Em has

cardinal mΓq,n with:

Γq,n =
1
n

(
∑
d/n

φ(n/d) qd) where φ is the Euler function

Proof. The cycles index of Cn is taken with the range of value q of Eq.

3.8 The Functions with Dihedral Symmetry Group

The dihedral group Dn of order 2n acts transitively on En
q , then dihedral sym-

metric q-ary functions can be enumerated from its properties by using the cycles
index of Dn.

Proposition 8. The set of dihedral symmetric q-ary functions from En
q onto

Em has cardinal mΔq,n with:

Δq,n =
1
2n

(
∑
d/n

φ(n/d) qd) +
{

1
2qk if n = 2k − 1
1
4 (q + 1)qk if n = 2k

where φ is the Euler function.

Proof. The cycles index of Dn is taken with the range of value q of Eq.

4 Balance Property

In this section we consider functions from En
q onto Eq (m=q).

4.1 Balanced Symmetric Functions

CONDITION FOR BALANCENESS. The first property to check in a
cryptologic algorithm is that the functions are balanced. Then the set of following
conditions expresses the balance property on symmetric functions:

∀a ∈ Eq : qn−1 =
∑

π∈Part(q−1,n,n.(q−1)) and fπ=a

M(n, r1, r2,, rq)

EXAMPLE: THE AFFINE FUNCTIONS. In a commutative ring Eq,
there are q.(q − 1) affine symmetric functions. As the number of units in Eq,
is u(Eq) (for example in Z/qZ u(Eq) = φ(q) and for GF (p), p prime, it is
u(Eq) = p − 1), among them q.u(Eq) are balanced: La,b(x) = b.(

∑n
i=0 xi) + a

where a ∈ Eq and b is a unit of Eq.
These La,b are the only balanced symmetric 2-ary functions known for every

n . The table A in appendix shows that on GF (q) when q=2 for some even n,
there is actually no other balanced symmetric function (see [23]).

Transitive q-Ary Functions over Finite Fields or Finite Sets 27

LOWER BOUNDS. The Boolean case was studied in [23] and the case m =
q = p prime in [10], our bound is worse for q prime but applies to any q. The
classic properties on binomial and multinomial coefficients supply a lower bound
to the number of balanced symmetric functions for m=q whatever q. If q=2.
As C(n, i) = C(n, n − i), when n is odd, it is possible to build by a central
symmetry around n/2, 2(n + 1)/2 balanced functions. In a more general way,
there are similar relations on multinomial coefficients.

Proposition 9. The number of balanced symmetric functions from En
q onto Eq

is:
if gcd(n, q) = 1 : ≥ (q!)

C(n+q−1,q−1)
q

if gcd(n, q) �= 1 : ≥ q.u(Eq)

Proof. For every value of k, if ρk is a circular rotation k over the q-tuple:
M(n, ρk(r1, r2,, rq)) = M(n, r1, r2,, rq). When gcd(n,q) = 1, for any such
q-tuple having

∑q
i=1 ri = n, we get q different shifts because the ri cannot be

all equal otherwise the sum means n = r.q. The C(n + q− 1, q− 1) partitions of
n can be spread among C(n + q − 1, q − 1)/q classes of q elements each. When
each class is appointed a permutation of the q elements from Eq a balanced sym-

metric function is obtained. There are then more than (q!)
C(n+q−1,q−1)

q balanced
symmetric functions.

Some numerical results are given in appendix.

4.2 t-Transitive Balanced q-Ary Functions

A necessary condition can also be stated for t-transitive balanced functions for
special n.

Proposition 10. If n = pk + t− 1 with p prime and f is a t-transitive balanced
function on Eq for every w in Eq then:

If gcd(p,q) = 1:
q−1∑
a1=0

· · ·
q−1∑

at−1=0

[
q−1∑
b=0

χw[f((bn−t+1a1 . . . at−1))]
]

= qt−1 mod p

If gcd(p,q) >1:
q−1∑
a1=0

· · ·
q−1∑

at−1=0

[
q−1∑
b=0

χw[f((bn−t+1a1 . . . at−1))]
]

= 0 mod p

Proof. Consider w in Eq. We take the restrictions of f on t-1 variables:
a1a2...at−1fxn=a1,xn−1=a2,...,xn−t+1=at−1(y) = f(y | a1a2 . . . at−1)

The symmetry group of f , Gf , is a t-transitive group. Consider the sub-group
H of Gf constituted of the elements from Gf that fix xn, xn−1, . . . xn−t+1. As
Gf is a t-transitive group of degree n then H is transitive of degree n − t + 1.
Furthermore a1a2...at−1f is invariant under H . So applying corollary 1 to H gives
p divides |yH |. We want to compute :

Sumw =
∑

x∈En
q

χw[f(x)] =
q−1∑
a1=0

· · ·
q−1∑

at−1=0

[
q−1∑
b=0

a1a2...at−1Sumw

]
where : a1a2...at−1Sumw =

∑
y∈En−t+1

q

χw[a1a2...at−1f(y)].

28 M. Mouffron

In a1a2...at−1Sumw, the sum on y can be grouped by H orbits and applying
corollary 1, the only remaining terms are the y with the same value n-t+1 times
(bn−t+1).

a1a2...at−1Sumw mod p =
∑

x∈En−t+1
q

χw[a1a2...at−1f(y)] mod p

=
q−1∑
b=0

χw[a1a2...at−1f(bn−t+1))] mod p

so

Sumw mod p =
q−1∑
a1=0

. . . · · ·
q−1∑

at−1=0

[
q−1∑
b=0

χw[a1a2...at−1f((bn−t+1))]

]
mod p

Sumw mod p =
q−1∑
a1=0

. . . · · ·
q−1∑

at−1=0

[
q−1∑
b=0

χw[f((bn−t+1a1..at−1))]

]
mod p

Due to balancedness: Sumw =
∑

x∈En
q

χw[f(x)] = qn−1. As n− 1 = pk + t− 2
and p is prime right hand side is qt−1 mod p when gcd(p,q) = 1 and 0 otherwise.

4.3 Sharply Transitive Balanced Functions

Proposition 11. Given n=p with p prime and any sharply transitive permuta-
tion group G, the set of G-sharply transitive balanced functions from En

q onto

Eq contains exactly (q!).M(qr,
q times r︷ ︸︸ ︷
r, . . . , r) functions with r = qn−1−1

n .

Proof. First of all (f(an))a∈Eq are a permutation of the set Eq. According to
corollary 1, if x �= (an) then p divides |xG | and |xG |≤ |G |=n so |xG |= p. So
the number of G-orbits of size 1 is : N0 = q and the number of G-orbits of size
p=n is : N1 = qn−q

n = q qn−1−1
n = q.r

Any sharply transitive balanced function permutes the N0 orbits with (q!)
possibilities, and for the N1 orbits of size p defines uniquely a balanced function
from a set of qr elements to a set of q elements. Their total number is then:
(q!).M(qr, r, . . . , r).

4.4 Degree of Transitive Balanced Boolean Functions

When q = 2, n = pk with p prime >2 and f is a transitive balanced function
on GF (2)n then from proposition 10 (f(0n), f(1n)) is either (0,1) or (1,0). A
balanced function has no term of degree n, its maximum degree can only be
n− 1 and we have.

Proposition 12. If n = pk with p prime > 2, then exactly half of the G transi-
tive balanced functions from GF (2)n onto GF (2) are of maximum degree n− 1
and half of the G transitive balanced functions have algebraic degree strictly less
than n− 1.

Transitive q-Ary Functions over Finite Fields or Finite Sets 29

Proof. Due to previous result, either (f(0n), f(1n)) = (0, 1) or (f(0n), f(1n)) =
(1, 0). Due to the transitivity, the coefficient of all the term of degree n-1 are
equals either all 0 or all 1. For every i <n, there exist π ∈ Gf such that π(i) = n.
So coefficients of degree n-1 are:

si
n−1(f) =

∑
x∈En

q /xi=0

f(x) mod 2 =
∑

x∈En
q /xi=0

f(π(x)) mod 2

so si
n−1(f) =

∑
y∈En

q /yn=0

f(y) mod 2 = sn
n−1(f)

Then the set of transitive balanced functions from GF (2)n onto GF(2) can
be partitioned in two sets:

Smax = { f transitive balanced functions on Eq with degree n− 1 }
Sinf = { f transitive balanced functions on Eq with degree <n− 1 }

A bijection can be described between these two sets, we can build a function fm

in Smax from any fi from Sinf by:

For any x �= (an) then fm(x) = fi(x), fm(0n) = fi(1n) and fm(1n) = fi(0n)

We see that fm is balanced if and only fi is balanced. We have also :

sn
n−1(fm) =

∑
x∈En

q /xn=0

fm(x) mod 2

sn
n−1(fm) =

∑
x∈En

q /xn=0

fi(x)− fi(0n) + fm(0n) mod 2

sn
n−1(fm) = sn

n−1(fi)− fm(1n) + fm(0n) mod 2

So sn
n−1(fm) = 1 due to the condition (fm(0n), fm(1n)) = (0, 1) or (1, 0) and by

this definition fm actually belongs to Smax if and only if fi belong to Sinf.

The results in table A show that the condition n odd is compulsory but the
other condition n = pk does not seem mandatory. On the other hand, the case
n = 35 with 262168 balanced functions and only 131072 of degree n − 1 shows
that n odd is neither sufficient. The proposition 10 can also be used to provide
similar results with other special n values for t-transitive functions.

5 Implementation Issues and Solutions

There are two main methods optimising the symmetric or partially symmetric
functions implementations:

1. q-ary decision diagrams (rather hardware oriented)
2. orbits counters intermediate (rather software oriented)

30 M. Mouffron

5.1 q-Ary Decision Diagrams Implementation

The q-ary decision diagrams (also called multiple-valued decision diagrams) are
generalizations of binary decision diagrams [4,12] to represent and implement q-
ary functions defined over a commutative ring Eq (see [5]). A QRODD is a q-ary
graph canonically associated with any q-ary function as QROBDD to Boolean
functions.

Definition 7. Let f be any function from En
q onto Em in n variables. We as-

sociate with f , its profile, p(f) a sequence of n + 1 positive integers and its
complexity s(f)

p(f) = (1, p1(f), . . . , pn(f))
s(f) = 1 + p1(f) + · · ·+ pn(f)

where pi(f) is the number of distinct q-ary functions in n− i variables obtained
from f by substituting all possible q-ary values to the first i q-ary variables
x1, . . . , xi.

This complexity measures the number of different “sub-functions” inside f gen-
erated by a sequential affectations of values to the variables which is also the
number of vertices of the canonical q-ary graph associated with f .

A general QROBDD verifies pi(f) ≤ inf(2i, 22n−i

) [12], and a general q-
ary QRODD of functions from En

q onto Em verifies pi(f) ≤ inf(qi, mqn−i

).
For symmetric functions f from En

q onto Eq, BUTLER [5] gives a loose upper
bound of s(f) ≤ C(q+n, q) nodes. We study a tighter upperbound for symmetric
functions from En

q onto Em.

5.2 Size of ODD of q-Ary Symmetric Functions

Proposition 13. When 1 < m < C(q − 1 + n, q− 1), 1 < n, the size s(f) of the
QRODD of a symmetric function f from En

q onto Em is less than:

U(n, m, q) = C(q + t(n, m, q)− 1, q) +
n−t(n,m,q)∑

i=0

mC(q−1+i,q−1)

where t(n,m,q) is defined in lemma 5 in D.

Proof. For a symmetric function f from En
q onto Em there are also two in-

equalities. The first one is more relevant on the upper part of the diagram
pi(f) ≤ C(q − 1 + i, q − 1) because the functions only depend on the parti-
tions of (x1, · · · , xi) which can only take C(q − 1 + i, q − 1) different values. On
the lower part we have symmetric functions with n-i variables which count gives
another bound pi(f) ≤ mC(q−1+n−i,q−1).

Transitive q-Ary Functions over Finite Fields or Finite Sets 31

For any q, n and 1 < m < C(q − 1 + n, q − 1), 1 < n then the upper bound
U(n,m,q) on the symmetric functions is:

U(n, m, q) =
t(n,m,q)−1∑

i=0

C(q − 1 + i, q − 1) +
n∑

i=t(n,m,q)

mC(q−1+n−i,q−1)

U(n, m, q) = C(q + t(n, m, q)− 1, q) +
n−t(n,m,q)∑

i=0

mC(q−1+i,q−1)

We can note that U(n, q, q) < C(q + n, q), so this bound is strictly better that
the bound given by BUTLER [5] for q = m.

When the deletion rule is applied, we get ODD with the following result.

Proposition 14. When 1 < m < C(q − 1 + n, q − 1), 1 < n and t(n,m,q) is
defined in lemma 5 in D, the size of the ODD of a symmetric function from En

q

onto Em is less than:

V (n, m, q) = U(n, m, q)− (n− t(n, m, q)− 1).m

The gain is not very important in comparison with QRODD as the symmetric
functions are dependent on all the variables. We fail in generalizing this to other
sets of transitive functions due to the fact that the restriction of a transitive func-
tion of n variables is no more a transitive function of n− 1 variables. Alternating
functions have the right property, they will be studied in another paper.

5.3 Applications

As an application for instance, if one needs four (resp. two) non-linear bal-
anced functions of 52 (resp. 58) binary variables and seeks among the symmet-
ric Boolean functions to have simple implementation, it is a failure. There is
none. However just take a non-linear balanced function among the symmetric
16-ary (resp. 4-ary) functions of 13 (resp. 29) variables from GF (24)13 onto
GF (24) (resp. GF (22)29 onto GF (22)). Our results (proposition 9) provide at
least 1, 34.10498752770 (resp. 2, 89.101711) symmetric non-linear balanced 16-ary
(resp. 4-ary) functions of 13 (resp. 29) variables, which replace the four (resp.
two) non-linear balanced Boolean functions of 52 (resp. 58) binary variables.
These 16-ary (resp. 4-ary) functions can be implemented with a 16-ary (resp.
4-ary) decision diagram with at most 67863915 nodes (resp. 28447 nodes).

6 Conclusion

In this paper known results on Boolean symmetric functions or symmetric func-
tions over GF (2) or GF (p) are extended both to partially symmetric and to
q-ary functions on a set of q elements (for any q ≥ 2). The propositions 9 to 12

32 M. Mouffron

show that when q > 2 the number of balanced symmetric q-ary functions is
much higher than in the Boolean case, and that the choice can be easy to select
one with further desirable properties. The good point for results on transitive
functions is that they can apply to a wide number of different sets of functions.
The results of this paper apply notably to case q = 2k, which is very useful
for actual use in cryptographic functions or hash functions design. When the
number of input variables is odd, this allows to build lots of non-linear Boolean
functions easy to implement.

The result of proposition 12 means, as G the symmetry group is any transitive
group, that when the number of input variables is n = pk with p prime >2, half
of symmetric balanced Boolean functions have degree n−1, half of rotation sym-
metric balanced Boolean functions have degree n−1, half of dihedral symmetric
balanced Boolean functions have degree n− 1,

The sets of t-transitive q-ary functions appear open enough to do trade-
off between many relevant properties. It will be interesting to pursue work on
implementations and on symmetry groups intermediate between the dihedral
group and the alternating group as the set of dihedral symmetric q-ary func-
tions appears to be too large and the set of alternating q-ary functions is too
small.

Acknowledgments. Author wishes to thank anonymous referees for their crit-
ical comments and their valuable suggestions.

References

1. Andrews, G.E.: The theory of partitions, Encyclopedia of mathematics and its
applications, vol. 2. Addison-Wesley Publishing Company, Reading (1976)

2. Ars, G., Faugere, J.-C.: Algebraic Immunities of functions over finite fields, INRIA
Rapport de recherche N◦ 5532 (March 2005)

3. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H.,
Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T.,
Sibert, H.: DECIM-128, https://www.cosic.esat.kuleuven.be

4. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C35(8), 677–691 (1986)

5. Butler, J.T., Herscovici, D.S., Sasao, T., Barton, R.J.: Average and Worst Case
Number of Nodes in Decision Diagrams of Symmetric Multiple-Valued Functions.
IEEE Transactions on computers 46(4) (April 1997)

6. Cameron Peter, J.: Permutation Groups. Cambridge Univ. Press, Cambridge
(1999)

7. Camion, P., Canteaut, A.: Generalization of Siegenthaler inequality and Schnorr-
Vaudenay multipermutations. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 372–386. Springer, Heidelberg (1996)

8. Canteaut, A., Videau, M.: Symmetric Boolean Functions. IEEE Transactions on
information theory 51(8), 2791–2811 (2005)

Transitive q-Ary Functions over Finite Fields or Finite Sets 33

9. Chen, H., Li, J.: Lower Bounds on the Algebraic Immunity of Boolean Functions,
http://arxiv.org/abs/cs.CR/0608080

10. Cusick, T., Li, Y., Stanica, P.: Balanced Symmetric Functions over GF (p). IEEE
Transactions on information theory 54(3), 1304–1307 (2008)

11. Dixon, J.D., Brian, M.: Permutation Groups. Springer, Heidelberg (1996)
12. Heinrich-Litan, L., Molitor, P.: Least Upper Bounds for the Size of OBDDs Using

Symmetry Properties. IEEE Transactions on computers 49(4), 271–281 (2000)
13. Knuth, D.: The art of Computer Programming. Sorting and Searching, vol. 3, pp.

506–542 (1973)
14. Lobanov, M.: Tight bound between nonlinearity and algebraic immunity, Cryptol-

ogy ePrint Archive, Report 2005/441 (2005), http://eprint.iacr.org/
15. Maitra, S., Sarkar, S., Dalai, D.K.: On Dihedral Group Invariant Boolean Func-

tions. In: Workshop on Boolean Functions Cryptography and Applications, 2007
(BFCA 2007), Paris, France, May 2-3 (2007)

16. Mitchell, C.: Enumerating Boolean functions of cryptographic significance. Journal
of cryptology 2(3), 155–170 (1990)

17. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

18. Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. Journal
of Universal Computer Science 5(1), 20–31 (1999)

19. Qu, C.X., Seberry, J., Pieprzyk, J.: Relationships between Boolean Functions and
symmetry group. In: International Computer Symposium 2000, ISC 2000, pp. 1–7
(2000)

20. Rivest, R., Vuillemin, J.: On recognizing graph properties from adjacency matrices.
Theoretical Computer Science 3, 371–384 (1976)

21. Sarkar, P., Maitra, S.: Balancedness and Correlation Immunity of Symmetric
Boolean Functions. In: Proc. R.C. Bose Centenary Symposium. Electronic Notes
in Discrete Mathematics, vol. 15, pp. 178–183 (2003)

22. Stanica, P., Maitra, S.: Rotation symmetric Boolean Functions: Count and crypto-
graphic properties. In: Proceedings of R.C. Bose Centenary Symposium on Discrete
Mathematics and Applications. Indian Statistical Institute, Calcutta (December
2002)

23. Von Zur Gathen, J., Roche, J.R.: Polynomials with two values. Combinator-
ica 17(3), 345–362 (1997)

24. Yuan, L.: Results on rotation symmetric polynomials over GF (p). Information
Sciences 178, 280–286 (2008)

Appendix

A Balanced Functions for m=q=2, n=2 to 63

We tabulate the exact number of balanced symmetric functions from GF (2)n

onto GF(2).

34 M. Mouffron

Table 1. Number of Balanced Symmetric or Alternating Boolean Functions

n All Degree n-1 Degree n-2 n All Degree n-1 Degree n-2

2 2 2 0 33 147456 73728 0
3 4 2 2 34 130 0 0
4 2 0 0 35 262168 131072 0
5 8 4 0 36 2 0 0
6 2 0 0 37 524288 262144 0
7 16 8 0 38 38 32 0
8 6 4 0 39 1048576 524288 0
9 32 16 0 40 2 0 0
10 2 0 0 41 2127872 1063936 0
11 64 32 0 42 2 0 0
12 2 0 0 43 4194304 2097152 0
13 144 72 0 44 134 0 0
14 14 4 4 45 8388608 4194304 0
15 256 128 0 46 2 0 0
16 2 0 0 47 17825792 8912896 524288
17 512 256 0 48 4098 4096 0
18 2 0 0 49 33554432 16777216 0
19 1024 512 0 50 6 0 4
20 6 0 0 51 67108864 33554432 0
21 2048 1024 0 52 2 0 0
22 2 0 0 53 134217728 67108864 0
23 4096 2048 0 54 34 16 16
24 50 0 0 55 268435456 134217728 0
25 8192 4096 0 56 6 4 0
26 6 0 4 57 536870912 268435456 0
27 16384 8192 0 58 2 0 0
28 2 0 0 59 1073741824 536870912 0
29 34816 17408 1024 60 2 0 0
30 2 0 0 61 2415919104 1207959552 0
31 66176 33088 64 62 3998 1996 652
32 6 4 0 63 4294967424 2147483712 64

B Balanced Functions over GF(3)

We tabulate the number of balanced symmetric functions from GF (3)n onto
GF (3):

Table 2. Number of Balanced Symmetric Functions over GF(3)

n 1 2 3 4 5 6

Lower bound 6 36 6 7776 279936 6

Actual number 6 108 2316 451170 842411124 12616571508

Transitive q-Ary Functions over Finite Fields or Finite Sets 35

C Dihedral Symmetric Functions from En
q

We tabulate the dimension of dihedral symmetric functions from En
q .

Table 3. Orbits of Dihedral Symmetric Functions from En
q

q - n 1 2 3 4 5 6 7 8

2 2 3 4 6 8 13 18 30
3 3 6 10 21 39 92 198 498
4 4 10 20 55 136 430 1300 4435
5 5 15 35 120 377 1505 5895 25395
6 6 21 56 231 888 4291 20646 107331
7 7 28 84 406 1855 10528 60028 365260
8 8 36 120 666 3536 23052 151848 1058058
9 9 45 165 1035 6273 46185 344925 2707245
10 10 55 220 1540 10504 86185 719290 6278140
11 11 66 286 2211 16775 151756 1399266 13442286
12 12 78 364 3081 25752 254618 2569788 26942565
13 13 91 455 4186 38233 410137 4496323 51084943
14 14 105 560 5565 55160 638015 7548750 92383305
15 15 120 680 7260 77631 963040 12229560 160386360

D Lemma for Decision Diagrams

Lemma 5. For any positive integers q and n > 1 if 1 < m < C(q − 1 + n, q −
1), 1 < n, there is a unique turnpoint t(n,m,q) such that:

C(q − 1 + t(n, m, q)− 1, q − 1) < mC(q−1+n−(t(n,m,q)−1),q−1)

and C(q − 1 + t(n, m, q), q − 1) ≥ mC(q−1+n−t(n,m,q),q−1)

Proof. Let note g(t) = C(q − 1 + t, q − 1) and h(t) = mC(q−1+n−t,q−1). It is
obvious that g is strictly increasing with t, h is strictly decreasing with t on
En+1. Furthermore, the inequalities g(1) < h(1) and g(n) > h(n) are satisfied
because: g(1) = q < mq ≤ h(1) = mC(q−1+n−1,q−1) as n > 1, and h(n) = m <
g(n) = C(q − 1 + n, q − 1) by hypothesis.

Fast Point Multiplication on Elliptic Curves

without Precomputation

Marc Joye

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
marc.joye@thomson.net

Abstract. Elliptic curves find numerous applications. This paper de-
scribes a simple strategy to speed up their arithmetic in right-to-left
methods. In certain settings, this leads to a non-negligible performance
increase compared to the left-to-right counterparts.

Keywords: Elliptic curve arithmetic, binary right-to-left exponentia-
tion, mixed coordinate systems.

1 Introduction

Elliptic curve point multiplication — namely, the computation of Q = [k]P given
a point P on an elliptic curve and a scalar k — is central in almost every non-
trivial application of elliptic curves (cryptography, coding theory, computational
number theory, . . .). Its efficiency depends on different factors: the field defini-
tion, the elliptic curve model, the internal point representation and, of course,
the scalar multiplication method itself.

The choice of the field definition impacts the performance of the underly-
ing field arithmetic: addition, multiplication and inversion. There are two types
of fields: fields where inversion is relatively fast and fields where it is not. In
the latter case, projective coordinates are preferred over affine coordinates to
represent points on an elliptic curve. Points can also be represented with their
x-coordinate only. Point multiplication is then evaluated via Lucas chains [13].
This avoids the evaluation of the y-coordinate, which may result in improved
overall performance.

Yet another technique to speed up the computation is to use additional
(dummy) coordinates to represent points [4]. This technique was later refined
by considering mixed coordinate systems [6]. The strategy is to add two points
where the first point is given in some coordinate system and the second point is
given in some other coordinate system, to get the result point in some (possibly
different) coordinate system.

Basically, there exist two main families of scalar multiplication methods, de-
pending on the direction scalar k is scanned: left-to-right methods and right-to-
left methods [5,10]. Left-to-right methods are often used as they lead to many

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 36–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Point Multiplication on Elliptic Curves without Precomputation 37

different generalizations, including windowing methods [8]. In this paper, we are
interested in implementations on constrained devices like smart cards. Hence,
we restrict our attention to binary methods so as to avoid precomputing and
storing (small) multiples of input point P . We evaluate the performance of the
classical binary algorithms (left-to-right and right-to-left) in different coordinate
systems. Moreover, as the inverse of a point on an elliptic curve can in most
cases be obtained for free, we mainly analyze their signed variants [14,15]. Quite
surprisingly, we find a number of settings where the right-to-left methods outper-
form the left-to-right methods. Our strategy is to make use of mixed coordinate
systems but, unlike [6], we do this on binary methods for scalar multiplication.
Such a strategy only reveals useful for the right-to-left methods because, as will
become apparent later, the point addition routine and the point doubling rou-
tine may use different input/output coordinate systems. This gives rise to further
gains not available for left-to-right methods.

The rest of this paper is organized as follows. In the next section, we introduce
some background on elliptic curves and review their arithmetic. We also review
the classical binary scalar multiplication methods. In Section 3, we present several
known techniques to speed up the point multiplication. In Section 4, we describe
fast implementations of right-to-left pointmultiplication. We analyze and compare
their performance with prior methods. Finally, we conclude in Section 5.

2 Elliptic Curve Arithmetic

An elliptic curve over a field K is a plane non-singular cubic curve with a
K-rational point [16]. If K is a field of characteristic �= 2, 3,1 an elliptic curve
over K can be expressed, up to birational equivalence, by the (affine) Weierstraß
equation

E/K : y2 = x3 + a4 x + a6 with Δ := −(4a4
3 + 27a6

2) �= 0 ,

the rational point being the (unique) point at infinity O. The condition Δ �= 0
implies that the curve is non-singular.

The set of K-rational points on E is denoted by E(K). It forms a commutative
group where O is the neutral element, under the ‘chord-and-tangent’ law. The
inverse of P = (x1, y1) is −P = (x1,−y1). The addition of P = (x1, y1) and
Q = (x2, y2) on E with Q �= −P is given by R = (x3, y3) where

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1 (1)

with

λ =

⎧⎪⎨⎪⎩
y1 − y2

x1 − x2
if P �= Q [chord]

3x1
2 + a4

2y1
if P = Q [tangent]

.

1 We focus on these fields because inversion can be expensive compared to a multi-
plication. For elliptic curves over binary fields, a fast point multiplication method
without precomputation is available [12].

38 M. Joye

2.1 Coordinate Systems

To avoid (multiplicative) inversions in the addition law, points on elliptic curves
are usually represented with projective coordinate systems.

In homogeneous coordinates, a point P = (x1, y1) is represented by the triplet
(X1 : Y1 : Z1) = (θx1 : θy1 : θ) for some non-zero θ ∈ K, on the elliptic curve
Y 2Z = X3+a4 XZ2+a6 Z3. The neutral element is given by the point at infinity
(0 : θ : 0) with θ �= 0. Conversely, a projective homogeneous point (X1 : Y1 : Z1)
with Z1 �= 0 corresponds to the affine point (X1/Z1, Y1/Z1).

In Jacobian coordinates, a point P = (x1, y1) is represented by the triplet
(X1 : Y1 : Z1) = (λ2 x1 : λ3 y1 : λ) for some non-zero λ ∈ K. The elliptic curve
equation becomes

Y 2 = X3 + a4 XZ4 + a6 Z6 .

Putting Z = 0, we see that the neutral element is given by O = (λ2 : λ3 : 0).
Given the projective Jacobian representation of a point (X1 : Y1 : Z1) with
Z1 �= 0, its affine representation can be recovered as (x1, y1) = (X1/Z1

2, Y1/Z1
3).

2.2 Point Addition

We detail the arithmetic with Jacobian coordinates as they give rise to faster
formulæ [9].

Replacing (xi, yi) with (Xi/Zi
2, Yi/Zi

3) in Eq. (1) we find after a little algebra
that the addition of P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) with Q �= ±P
(and P , Q �= O) is given by R = (X3 : Y3 : Z3) where

X3 = R2 + G− 2V , Y3 = R(V −X3)− S1G , Z3 = Z1Z2H (2)

with R = S1 − S2, G = H3, V = U1H
2, S1 = Y1Z2

3, S2 = Y2Z1
3, H = U1 −U2,

U1 = X1Z2
2, and U2 = X2Z1

2 [6]. Let M and S respectively denote the cost of a
(field) multiplication and of a (field) squaring. We see that the addition of two
(different) points requires 12M + 4S. When a fast squaring is available, this can
also be evaluated with 11M+ 5S by computing 2Z1Z2 = (Z1 +Z2)2−Z1

2−Z2
2

and “rescaling” X3 and Y3 accordingly [1].
The doubling of P = (X1 : Y1 : Z1) (i.e., when Q = P) is given by R = (X3 :

Y3 : Z3) where

X3 = M2 − 2S , Y3 = M(S −X3)− 8T , Z3 = 2Y1Z1 (3)

with M = 3X1
2 + a4 Z1

4, T = Y1
4, and S = 4X1Y1

2. Letting c denote the cost
of a multiplication by constant a4, the doubling of a point costs 3M + 6S + 1c
or 1M + 8S + 1c by evaluating S = 2[(X1 + Y1

2)2 −X1
2 − T] and Z3 = (Y1 +

Z1)2 − Y1
2 − Z1

2 [1].
Remark that Eq. (3) remains valid for doubling O. We get [2](λ2 : λ3 : 0) =

(λ8 : λ12 : 0) = O.

Fast Point Multiplication on Elliptic Curves without Precomputation 39

2.3 Point Multiplication

Let k =
∑�−1

i=0 ki 2i with ki ∈ {0, 1} denote the binary expansion of k. The
evaluation of [k]P , that is, P + P + · · ·+ P (k times) can be carried out as

[k]P =
∑

0≤i≤�−1

[ki]
(
[2i]P

)
=

∑
0≤i≤�−1

ki=1

[2i]P =
∑

0≤i≤�−1
ki=1

Pi with

{
P0 = P

Pi = [2]Pi−1

.

By keeping track of the successive values of Pi in a variable R1 and by using
a variable R0 to store the accumulated value,

∑
Pi, we so obtain the following

right-to-left algorithm:

Algorithm 1. Right-to-left binary method
Input: P , k ≥ 1
Output: [k]P
1: R0 ← O; R1 ← P
2: while (k > 1) do
3: if (k is odd) then R0 ← R0 + R1

4: k ← �k/2�
5: R1 ← [2]R1

6: end while
7: R0 ← R0 + R1

8: return R0

There is a similar left-to-right variant. It relies on the obvious observation
that [k]P = [2]

(
[k/2]P

)
when k is even. Furthermore, since when k is odd, we

can write [k]P = [k′]P + P with k′ = k − 1 even, we get:2

Algorithm 2. Left-to-right binary method
Input: P , k ≥ 1, � the binary length k (i.e., 2�−1 ≤ k ≤ 2� − 1)
Output: [k]P
1: R0 ← P ; R1 ← P ; � ← � − 1
2: while (� �= 0) do
3: R0 ← [2]R0

4: � ← � − 1
5: if (bit(k, �) �= 0) then R0 ← R0 + R1

6: end while
7: return R0

2 We denote by bit(k, i) bit number i of k; bit number 0 being by definition the least
significant bit.

40 M. Joye

3 Boosting the Performance

3.1 Precomputation

The observation the left-to-right binary method relies on readily extends to
higher bases. We have:

[k]P =

{
[2b]

(
[k/2b]P

)
if 2b | k

[2b]
(
[(k − r)/2b]P

)
+ [r]P with r = k mod 2b otherwise

.

The resulting method is called the 2b-ary method and requires the prior precom-
putation of [r]P for 2 ≤ r ≤ 2b−1. Observe that when r is divisible by a power of
two, say 2s | r, we obviously have [k]P = [2s]

(
[2b]

(
[(k− r)/2b+s]P

)
+ [r/2s]P

)
.

Consequently, only odd multiples of P need to be precomputed.
Other choices and optimal strategies for the points to be precomputed are

discussed in [2,6]. Further generalizations of the left-to-right binary method to
higher bases, including sliding-window methods, are comprehensively surveyed
in [8].

3.2 Special Cases

As shown in § 2.2, a (general) point addition in Jacobian coordinates costs 11M+
5S. In the case Z2 = 1, the addition of (X1 : Y1 : Z1) and (X2 : Y2 : 1) = (X2, Y2)
only requires 7M+4S by noting that Z2

2, U1 and S1 do not need to be evaluated
and that Z3 = Z1H . The case Z2 = 1 is the case of interest for the left-to-right
binary method because the same (input) point P is added when ki = 1 (cf. Line 5
in Algorithm 2).

An interesting case for point doubling is when a4 = −3. Intermediate value M
(cf. Eq.(3)) can then be computed as M = 3(X1 + Z1

2)(X1 − Z1
2). Therefore,

using the square-multiply trade-off for computing Z3, Z3 = (Y1+Z1)2−Y1
2−Z1

2,
we see that the cost of point doubling drops to 3M+5S. Another (less) interesting
case is when a4 is a small constant (e.g., a4 = ±1 or ±2) in which case c ≈ 0
and so the point doubling only requires 1M + 8S.

3.3 Signed-Digit Representation

A well-known strategy to speed up the evaluation of Q = [k]P on an elliptic
curves is to consider the non-adjacent form (NAF) of scalar k [14]. The NAF is
a canonical representation using the set of digits {−1, 0, 1} to uniquely represent
an integer. It has the property that the product of any two adjacent digits is zero.
Among the signed-digit representations with {−1, 0, 1}, the NAF has the smallest
Hamming weight; on average, only one third of its digits are non-zero [15].

When the cost of point inversion is negligible, it is advantageous to input the
NAF representation of k, k =

∑�
i=0 k′

i 2i with k′
i ∈ {−1, 0, 1} and k′

i · k′
i+1 =

0, and to adapt the scalar multiplication method accordingly. For example, in
Algorithm 2, Line 5, R1 is added when k′

i = 1 and R1 is subtracted when
k′

i = −1. This strategy reduces the average number of point additions in the
left-to-right binary method from (�− 1)/2 to �/3.

Fast Point Multiplication on Elliptic Curves without Precomputation 41

4 Fast Right-to-Left Point Multiplication

In this section, we optimize as much as possible the binary right-to-left method
for point multiplication on elliptic curves over fields K of characteristic �= 2, 3. We
assume that inversion in K is relatively expensive compared to a multiplication
in K and so restrict our attention to inversion-free formulæ.

We do not consider windowing techniques, which require precomputing and
storing points. The targets we have in mind are constrained devices. We also
wish a general method that works for all inputs and elliptic curves. We assume
that the input elliptic curve is given by curve parameters a4 and a6. We have
seen earlier (cf. § 3.2) that the case a4 = −3 is particularly interesting because
it yields a faster point doubling. We do not focus on this case because not all
elliptic curves over K can be rescaled to a4 = −3. Likewise, as we consider
inversion-free formulæ, we require that the input and output points are given in
projective coordinates. This allows the efficient computation of successive point
multiplications. In other words, we do not assume a priori conditions on the
Z-coordinate of input point P .

In summary, we are interested in developing of a fast, compact and general-
purpose point multiplication algorithm.

4.1 Coordinate Systems

In Jacobian coordinates, a (general) point addition requires 11M + 5S. In [4],
Chudnovsky and Chudnovsky suggested to add two more coordinates to the
Jacobian representation of points. A point P is given by five coordinates, (X1 :
Y1 : Z1 : E1 : F1) with E1 = Z1

2 and F1 = Z1
3. This extended representation

is referred to as the Chudnovsky coordinates and is abbreviated as J c. The
advantage is that the two last coordinates (i.e., Ei and Fi) only need to be
computed for the result point, saving 2(S + M)− 1(S + M) = 1M + 1S over the
classical Jacobian coordinates. In more detail, from Eq. (2), including the square-
multiply trade-off and “rescaling”, we see that the sum (X3 : Y3 : Z3 : E3 : F3)
of two (different) points (X1 : Y1 : Z1 : E1 : F1) and (X2 : Y2 : Z2 : E2 : F2) can
now be evaluated as

X3 = R2 + G− 2V , Y3 = R(V −X3)− S1G ,
Z3 =

(
(Z1 + Z2)2 − E1 − E2

)
H , E3 = Z3

2 , F3 = E3Z3
(4)

with R = S1 − S2, G = 4H3, V = 4U1H
2, S1 = 2Y1F2, S2 = 2Y2F1, H =

U1 −U2, U1 = X1E2, and U2 = X2E1, that is, with 10M + 4S. The drawback of
Chudnovsky coordinates is that doubling is slower. It is easy to see from Eq. (3)
that point doubling in Chudnovsky coordinates costs one more multiplication,
that is, 2M + 8S + 1c.

A similar approach was taken by Cohen, Miyaji and Ono [6] but to reduce the
cost of point doubling (at the expense of a slower point addition). Their idea is
to add a fourth coordinate, W1 = a4 Z1

4, to the Jacobian point representation

42 M. Joye

(X1 : Y1 : Z1). This representation, called modified Jacobian representation, is
denoted by Jm. With this representation, on input point (X1 : Y1 : Z1 : W1),
its double, [2](X1 : Y1 : Z1 : W1), is given by (X3 : Y3 : Z3 : W3) where
the expression of X3, Y3 and Z3 is given by Eq. (3) but where M and W3 are
evaluated using W1. In more detail, we write

X3 = M2 − 2S , Y3 = M(S −X3)− 8T ,
Z3 = 2Y1Z1 , W3 = 16TW1

(5)

with M = 3X1
2 + W1, T = Y1

4, and S = 2[(X1 + Y1
2)2 − X1

2 − T]. The
main observation is that W3 := a4 Z3

4 = 16Y1
4(a4 Z1

4) = 16TW1. This saves
(2S + 1c) − 1M. Notice that the square-multiply trade-off cannot be used for
evaluating Z3 since the value of Z1

2 is not available. The cost of point doubling
is thus 3M+5S whatever the value of parameter a4. The drawback is that point
addition is more costly as the additional coordinate, W3 = a4 Z3

4, needs to
be evaluated. This requires 2S + 1c and so the cost of point addition becomes
11M + 7S + 1c.

The different costs are summarized in Table 1. For completeness, we also
include the cost when using affine and projective homogeneous coordinates. For
affine coordinates, I stands for the cost of a field inversion.

Table 1. Cost of point addition and doubling for various coordinate systems

System Point addition
Point doubling

(a4 = −3)

Affine (A) 2M + S + I 2M + 2S + I —
Homogeneous (H) 12M + 2S 5M + 6S + 1c 7M + 3S
Jacobian (J) 11M + 5S 1M + 8S + 1c 3M + 5S
Chudnovsky (J c) 10M + 4S 2M + 8S + 1c 4M + 5S
Modified Jacobian (J m) 11M + 7S + 1c 3M + 5S —

When using projective coordinates, we see that Chudnovsky coordinates yield
the faster point addition and that modified Jacobian coordinates yield the faster
point doubling on any elliptic curve. We also see that point doubling in modi-
fied Jacobian coordinates is as fast as the fastest a4 = −3 case with (regular)
Jacobian coordinates.

4.2 Mixed Representations

Rather than performing the computation in a single coordinate system, it would
be interesting to consider mixed representations in the hope to get further gains.
This approach was suggested in [6]. For left-to-right windowing methods with
windows of width w ≥ 2, the authors of [6] distinguish three type of operations
and consider three coordinate systems Ci, 1 ≤ i ≤ 3:

Fast Point Multiplication on Elliptic Curves without Precomputation 43

1. intermediate point doubling: C1 → C1, R0 �→ [2]R0;
2. final point doubling: C1 → C2, R0 �→ [2]R0;
3. point addition: C2 × C3 → C1, (R0, R1) �→ R0 + R1.

For inversion-free routines (or when the relative speed of I to M is slow), they
conclude that the optimal strategy is to choose C1 = Jm, C2 = J and C3 = J c.

It is worth remarking that the left-to-right binary method (Algorithm 2) and
its different generalizations have in common the use of an accumulator (i.e., R0)
that is repeatedly doubled and to which the input point or a multiple thereof is
repeatedly added. This explains the choices made in [6]:

– the input representation of the point doubling (i.e., C1) is the same as the
output representation of the point addition routine;

– the output representation of the (final) point doubling routine (i.e., C2) is
the same as the input representation of [the first point of] the point addition
routine;

– the input representation of [the second point of] the point addition routine
(i.e., C3) should allow the calculation of output point in representation C1.

4.3 Right-to-left Methods

Interestingly, the classical right-to-left method (Algorithm 1) is not subject to the
same conditions: a same register (i.e., R1) is repeatedly doubled but its value is
not affected by the point additions (cf. Line 3). As a result, the doubling routine
can use any coordinate system as long as its output gives enough information
to enable the subsequent point addition.3 Formally, letting the three coordinate
systems Di, 1 ≤ i ≤ 3, we require the following conditions on the point addition
and the point doubling routines:

1. point addition: D1 ×D2 → D1, (R0, R1) �→ R0 + R1;
2. point doubling: D3 → D3, R1 �→ [2]R1 with D3 ⊇ D2.

The NAF-based approach is usually presented together with the left-to-right
binary method. It however similarly applies when scalar k is right-to-left scanned.
Indeed, if k =

∑�
i=0 k′

i 2i denotes the NAF expansion of k, we can write

[k]P =
∑

0≤i≤�

[k′
i]
(
[2i]P

)
=

∑
0≤i≤�
k′

i �=0

sgn(k′
i)Pi with

{
P0 = P

Pi = [2]Pi−1

(6)

and where sgn(k′
i) denotes the sign of k′

i (i.e., sgn(k′
i) = 1 if k′

i > 0 and sgn(k′
i) =

−1 if k′
i < 0). Note that our previous analysis on the choice of coordinate systems

3 More generally, we require an efficient conversion from the output representation of
the point doubling (say, D3) and the input representation of [the second point of] the
point addition (say, D2). With the aforementioned (projective) point representations,
{H,J ,J c,J m}, for the sake of efficiency, this translates into D3 ⊇ D2, that is, that
the coordinate system D2 is a subset of coordinate system D3.

44 M. Joye

on the (regular) right-to-left binary method remains valid for the NAF-based
variant.

We are now ready to present our algorithm. The fastest doubling is given by
the modified Jacobian coordinates. Hence, we takeD3 = Jm. It then follows that
we can choose D2 = Jm or J . As the latter leads to a faster point addition, we
take D2 = J . For the same reason, we take D1 = J . The inputs of the algorithm
are point P = (X1 : Y1 : Z1)J given in Jacobian coordinates and scalar k ≥ 1.
The output is [k]P = (Xk : Yk : Zk)J also given in Jacobian coordinates. For
further efficiency, we use a NAF representation for k and compute it on-the-fly.
JacAdd[(X∗, Y ∗, Z∗), (T1, T2, T3)] returns the sum of (X∗ : Y ∗ : Z∗) and (T1 :
T2 : T3) as per Eq. (2), provided that (X∗ : Y ∗ : Z∗) �= ±(T1 : T2 : T3) and (X∗ :
Y ∗ : Z∗), (T1 : T2 : T3) �= O. The JacAdd routine should be adapted to address
these special cases as is done e.g. in [9, §A.10.5]. ModJacDouble[(T1, T2, T3, T4)]
returns the double of point (T1 : T2 : T3 : T4) in modified Jacobian coordinates
as per Eq. (3).

Algorithm 3. Fast right-to-left binary method
Input: P = (X1 : Y1 : Z1)J , k ≥ 1
Output: [k]P = (Xk : Yk : Zk)J
1: (X∗, Y ∗, Z∗) ← (1, 1, 0); (T1, T2, T3, T4) ← (X1, Y1, Z1, a4 Z1

4)
2: while (k > 1) do
3: if (k is odd) then
4: u ← 2 − (k mod 4); k ← k − u
5: if (u = 1) then
6: (X∗, Y ∗, Z∗) ← JacAdd[(X∗, Y ∗, Z∗), (T1, T2, T3)]
7: else
8: (X∗, Y ∗, Z∗) ← JacAdd[(X∗, Y ∗, Z∗), (T1,−T2, T3)]
9: end if

10: end if
11: k ← k/2
12: (T1, T2, T3, T4) ← ModJacDouble[(T1, T2, T3, T4)]
13: end while
14: (X∗, Y ∗, Z∗) ← JacAdd[(X∗, Y ∗, Z∗), (T1, T2, T3)]
15: return (X∗, Y ∗, Z∗)

Remember that we are targeting constrained devices (e.g., smart cards). In
our analysis, we assume that there is no optimized squaring: S/M = 1. Also as
we suppose general inputs, we also assume c/M = 1. However, to ease the com-
parison under other assumptions, we present the cost formulæ in their generality.
We neglect field additions, subtractions, tests, etc. as is customary.

As a NAF has on average one third of digits non-zero, the expected cost for
evaluating [k]P using Algorithm 3 for an �-bit scalar k is

�

3
· (11M + 5S) + � · (3M + 5S) ≈ 13.33� M . (7)

Fast Point Multiplication on Elliptic Curves without Precomputation 45

This has to be compared with the �
3 ·(11M+5S)+�·(1M+8S+1c) ≈ 15.33� M of

the (left-to-right or right-to-left) inversion-free NAF-based binary methods using
Jacobian coordinates. We gain 2 field multiplications per bit of scalar k.

One may argue that Algorithm 3 requires one more temporary (field) variable,
T4. If two more temporary (field) variables are available, the classical methods
can be sped up by using modified Jacobian representation; in this case, the
cost becomes �

3 · (11M + 7S + 1c) + � · (3M + 5S) ≈ 14.33� M, which is still
larger than 13.33� M. If three more temporary (field) variables are available, the
performance of the left-to-right method can be best enhanced by adapting the
optimal strategy of [6] as described earlier to the case w = 1: Input point P is
then represented in Chudnovsky coordinates. This saves 1M + 1S in the point
addition. As a result, the cost for evaluating [k]P becomes �

3 · (10M+6S+1c)+
� · (3M + 5S) ≈ 13.67� M > 13.33� M.

Consequently, we see that even when further temporary variables are avail-
able, Algorithm 3 outperforms all NAF-based inversion-free methods without
precomputation. The same conclusion holds true when considering unsigned
representations for k. Replacing �/3 with (� − 1)/2, we obtain ≈ 16� M with
the proposed strategy, and respectively 18� M, 17.5� M and 16.5� M for the other
left-to-right binary methods.

In addition to efficiency, Algorithm 3 presents a couple of further advantages.
Like the usual right-to-left algorithm, it is compatible with the NAF computation
and does not require the knowledge of the binary length of scalar k ahead of
time. Moreover, as doubling is performed using modified Jacobian coordinates,
the doubling formula is independent of curve parameter a4.

For sensitive applications, Algorithm 3 can be protected against SPA-type at-
tacks with almost no penalty using the table-based atomicity technique of [3], as
well as against DPA-type attacks using classical countermeasures.4 Furthermore,
because scalar k is right-to-left scanned, Algorithm 3 thwarts the doubling at-
tack described in [7]. Note that, if not properly protected against, all left-to-right
point multiplication methods (including the Montgomery ladder) are subject to
the doubling attack.

5 Conclusion

This paper presented an optimized implementation for inversion-free point mul-
tiplication on elliptic curves. In certain settings, the proposed implementation
outperforms all such previously known methods without precomputation. Fur-
ther, it scans the scalar from the right to left, which offers a couple of additional
advantages.

Acknowledgments. I am grateful to the reviewers for useful comments.

4 SPA and DPA respectively stand for “simple power analysis” and “differential power
analysis”; see [11].

46 M. Joye

References

1. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/jacobian.html

2. Bernstein, D.J., Lange, T.: Fast scalar multiplication on elliptic curves. In: Mullen,
G., Panario, D., Shparlinski, I. (eds.) 8th International Conference on Finite Fields
and Applications, Contemporary Mathematics. American Mathematical Society
(to appear)

3. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing sim-
ple side-channel analysis: Side-channel atomicity. IEEE Transactions on Comput-
ers 53(6), 760–768 (2004)

4. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Applied
Mathematics 7(4), 385–434 (1986)

5. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics, vol. 138. Springer, Heidelberg (1993)

6. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

7. Fouque, P.-A., Valette, F.: The doubling attack - Why upwards is better than down-
wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269–280. Springer, Heidelberg (2003)

8. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algo-
rithms 27(1), 129–146 (1998)

9. IEEE 1363-2000. Standard specifications for public key cryptography. IEEE Stan-
dards (August 2000)

10. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Addison-Welsey (1981)
11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
12. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without

precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

13. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

14. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve us-
ing addition-subtraction chains. RAIRO Theoretical Informatics and Applica-
tions 24(6), 531–543 (1990)

15. Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)
16. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-

ics, vol. 106. Springer, Heidelberg (1986)

Optimal Extension Field Inversion in the

Frequency Domain

Selçuk Baktır and Berk Sunar

WPI, Cryptography & Information Security Laboratory, Worcester, MA , USA

Abstract. In this paper, we propose an adaptation of the Itoh-Tsujii
algorithm to the frequency domain for efficient inversion in a class of
Optimal Extension Fields. To the best of our knowledge, this is the first
time a frequency domain finite field inversion algorithm is proposed for
elliptic curve cryptography. We believe the proposed algorithm would be
well suited especially for efficient low-power hardware implementation of
elliptic curve cryptography using affine coordinates in constrained small
devices such as smart cards and wireless sensor network nodes.

Keywords: Elliptic curve cryptography, finite fields, inversion, discrete
Fourier transform, number theoretic transform.

1 Introduction

An efficient method for computing Montgomery multiplication in the frequency
domain, named discrete Fourier transform (DFT) modular multiplication, was
introduced in [5,6]. With the DFT modular multiplication algorithm, multipli-
cation in GF (pm) can be achieved with only a linear number of base field GF (p)
multiplications in addition to a quadratic number of simpler base field opera-
tions such as addition and fixed bitwise rotation for practical values of p and m
relevant to elliptic curve cryptography (ECC). Utilizing the DFT modular mul-
tiplication algorithm, an efficient and low-area implementation of a frequency
domain ECC processor architecture is introduced in [7]. The proposed archi-
tecture performs all finite field arithmetic operations in the frequency domain,
however avoids inversions through the use of projective coordinates. Even though
the DFT modular multiplication algorithm proved efficient for hardware imple-
mentation of ECC [7], the memory required for storing the projective point
coordinates constitutes a large amount of the circuit area. Projective coordinate
representation requires three coordinate values to represent a point, while affine
coordinate representation requires only two. This may be a significant drawback
for projective coordinate implementations of ECC in tightly constrained devices.
Therefore, it is important to have a frequency domain inversion algorithm in
order to realize ECC in the affine coordinates potentially yielding lower storage
requirement and power consumption. With this work we introduce an adaptation
of Itoh-Tsujii inversion [10] to the frequency domain for a class of Optimal Ex-
tension Fields (OEF) [1,2] GF (pm) where the field characteristic is a Mersenne

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 47–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 S. Baktır and B. Sunar

prime p = 2n − 1 or a Mersenne prime divisor p = (2n − 1)/t for a positive
integer t and m = n. Our algorithm achieves an extension field inversion with
only a single inversion, O(m log m) multiplications and constant multiplications,
O(m2 log m) additions and O(m2 log m) fixed bitwise rotations in the base field
GF (p).

In Section 2, we provide some background information on OEFs and their
arithmetic both in the time and frequency domains. In Section 3, we present an
adaptation of Itoh-Tsujii inversion for OEFs to the frequency domain which can
be used for efficient implementation of ECC in the frequency domain using the
affine coordinates.

2 Background

2.1 OEFs and Their Arithmetic

An extension field GF (pm) is generated by using an mth degree polynomial ir-
reducible over GF (p) and comprises the residue classes modulo the irreducible
field generating polynomial. OEFs are a special class of finite extension fields
which use a field generating polynomial of the form f(x) = xm − w and have
a pseudo-Mersenne prime field characteristic given in the form p = 2n ± c with
log2 c < �n

2 �. The following theorem provides a simple means to identify irre-
ducible binomials that can be used in OEF construction:

Theorem 1. [13] Let m ≥ 2 be an integer and w ∈ GF (p)∗. Then the binomial
xm − w is irreducible in GF (p)[x] if and only if the following three conditions
are satisfied:

1. each prime factor of m divides the order e of w in GF (p)∗;
2. the prime factors of m do not divide p−1

e ;
3. p = 1 mod 4 if m = 0 mod 4.

In OEFs the pseudo-Mersenne prime field characteristic allows efficient reduction
in the base field GF (p) operations and the binary field generating polynomial
allows for efficient reduction in the extension field. OEFs are found to be suc-
cessful in ECC implementations where resources such as computational power
and memory are constrained [17]. For representing OEF elements, the standard
basis is utilized. An OEF element A ∈ GF (pm) is represented in standard basis
by a polynomial of degree at most m− 1 as follows

A =
m−1∑
i=0

aix
i = a0 + a1x + a2x

2 + . . . + am−1x
m−1,

where ai ∈ GF (p) for 0 ≤ i ≤ m− 1.

Addition/Subtraction
The addition/subtraction of A, B ∈ GF (pm) is performed by adding/subtracting
the polynomial coefficients as

Optimal Extension Field Inversion in the Frequency Domain 49

A±B =
m−1∑
i=0

aix
i ±

m−1∑
i=0

bix
i =

m−1∑
i=0

(ai ± bi)xi .

Multiplication
For A, B ∈ GF (pm), the product C = A · B is computed in two steps: the
polynomial multiplication

C′ = A · B =
2m−2∑
i=0

c′ix
i (1)

and then the modular reduction C = C′ mod f(x) where the binomial f(x) =
xm − w facilitates efficient reduction.

Inversion
An elegant method for inversion was introduced by Itoh and Tsujii [12]. For
A ∈ GF (pm), where A �= 0, B = A−1 is computed in four steps as follows

1. Compute the exponentiation Ar−1 in GF (pm), where r = pm−1
p−1 ;

2. Compute the product Ar = (Ar−1) · A;
3. Compute the inversion (Ar)−1 in GF (p);
4. Compute the product Ar−1 · (Ar)−1 = A−1 .

For the particular choice of

r =
pm − 1
p− 1

,

Ar belongs to the ground field GF (p) [13]. This allows the inversion in step 3 to
be computed in GF (p) instead of the larger field GF (pm). For the exponentiation
Ar−1 in step 1, the exponent r − 1 is expanded as follows

r − 1 =
pm − 1
p− 1

− 1 = pm−1 + pm−2 + . . . + p2 + p .

This exponentiation is computed by finding the powers Api

. The original Itoh-
Tsujii algorithm proposes to use a normal basis representation over GF (2) which
turns the pi-th power exponentiations into simple bitwise rotations. In [10] this
technique was adapted to work efficiently in the standard basis and it was shown
that Ar−1 can be computed by performing at most �log2(m−1)�+HW (m−1)−1
multiplications and �log2(m− 1)�+ HW (m− 1) pi-th power exponentiations in
GF (pm), where HW (m) denotes the hamming-weight of m. Api

is the i-th iterate
of the Frobenius map where a single iterate is defined as σ(A) = Ap. Using the
properties σ(A + B) = σ(A) + σ(B) for any A, B ∈ GF (pm) and σ(a) = ap = a

for any a ∈ GF (p), the exponentiation Api

= σi(A) can be simplified as

Api

=

⎛⎝m−1∑
j=0

ajx
j

⎞⎠pi

=
m−1∑
j=0

(ajx
j)pi

=
m−1∑
j=0

ajx
jpi

. (2)

Theorem 2 shows that Api

can be computed by a simple scaled permutation of
the coefficients in the polynomial representation of A.

50 S. Baktır and B. Sunar

Theorem 2. [3] For an irreducible binomial f(x) = xm−w defined over GF (p),
the following identity holds for an arbitrary positive integer i and A ∈ GF (pm),

Api

=

⎛⎝m−1∑
j=0

ajx
j

⎞⎠pi

=
m−1∑
j=0

(aj csj)x
sj

where sj = jpi mod m and csj = w
jpi−sj

m . Furthermore, the sj values are distinct
for 0 ≤ j ≤ m− 1.

Using the method in Theorem 2, exponentiations of degree pi may be achieved
with the help of a lookup table of precomputed csj values, using not more than
m−1 constant coefficient multiplications. When m is prime, Corollary 1 further
simplifies this computation by showing that sj = jpi mod m in Theorem 2 equals
j and hence no permutations occur for the coefficients of A.

Corollary 1. [3] If f(x) = xm − w is irreducible over GF (p), m is prime,
xj ∈ GF (p)[x] and i is an arbitrary positive rational integer, then (xj)pi

= wtxj

(mod f(x)), where t = jpi−j
m .

Proof. We need to prove that jpi mod m = j, or in other words m|jpi− j. Since
m|(p − 1) is a necessary condition for the existence of the irreducible binomial
f(x) = xm−w over GF (p) for a prime m (see the first condition in Theorem 1),
m also divides jpi − j = j(pi − 1) = j(p− 1)(pi−1 + pi−2 + · · ·+ p + 1). Hence,
the proof is complete. �

2.2 OEF Arithmetic in the Frequency Domain

In this section, we briefly explain previous work on DFT based finite field multi-
plication for ECC in the frequency domain. For further information, the reader is
referred to [5,6,7]. In order to perform OEF arithmetic in the frequency domain,
one needs to first represent the operands in the frequency domain. To convert
an element in GF (pm) into its frequency domain representation, the number
theoretical transform is used.

Number Theoretic Transform
Number theoretic transform (NTT) over a ring, also known as the DFT over a
finite field, was introduced by Pollard [14]. The NTT computations over GF (p)
are defined by utilizing a dth primitive root of unity, denoted by r, from GF (p)
or a finite extension of GF (p). For a sequence (a) of length d whose entries
are from GF (p), the forward NTT of (a) over GF (p), denoted by (A), can be
computed as

Aj =
d−1∑
i=0

air
ij , 0 ≤ j ≤ d− 1 . (3)

Optimal Extension Field Inversion in the Frequency Domain 51

Here we refer to the elements of (a) and (A) by ai and Ai, respectively, for
0 ≤ i ≤ d− 1. Likewise, the inverse NTT of (A) over GF (p) can be computed as

ai =
1
d
·

d−1∑
j=0

Ajr
−ij , 0 ≤ i ≤ d− 1 . (4)

The sequences (a) and (A) are referred to as the time and frequency domain
representations, respectively, of the same sequence. We would like to caution the
reader that for an NTT of length d to exist over GF (p), the condition d|p − 1
should be satisfied. Note that, in this case, the equality GCD(d, p) = 1 holds
for the greatest common denominator of d and p, and hence the inverse of d in
GF (p), which is needed for the inverse NTT computations, always exists.

Cyclic convolution of two d-element sequences (a) and (b) in the time domain
results in another d-element sequence (c) and can be computed as follows:

ci =
d−1∑
j=0

aj bi−j mod d , 0 ≤ i ≤ d− 1 . (5)

According to the convolution theorem, the above cyclic convolution operation
in the time domain is equivalent to the following computation in the frequency
domain:

Ci = Ai ·Bi , 0 ≤ i ≤ d− 1 , (6)

where (A), (B) and (C) denote the DFTs of (a), (b) and (c), respectively. Hence,
cyclic convolution of two d-element sequences in the time domain, with com-
plexity O(d2), is equivalent to simple pairwise multiplication of the DFTs of
these sequences and has a surprisingly low O(d) complexity [8]. Multiplication
of two polynomials, as in OEF arithmetic described with (1), is equivalent to
the acyclic (linear) convolution of the polynomial coefficients. However, if we
represent elements of GF (pm), which are polynomials of degree at most (m− 1)
with coefficients in GF (p), with at least d = (2m − 1) element sequences by
appending zeros at the end, then the cyclic convolution of two such sequences
will be equivalent to their acyclic convolution and hence give us their polynomial
multiplication. Note that, using the convolution property, the polynomial prod-
uct c(x) = a(x) · b(x) can be computed very efficiently in the frequency domain
but the final reduction by the field generating polynomial is not performed. For
further multiplications to be performed on the product c(x) in the frequency do-
main, it needs to be first reduced modulo the field generating polynomial. DFT
modular multiplication algorithm [5,6], presented with Algorithm 1, performs
both polynomial multiplication and modular reduction in the frequency domain
and thus makes it possible to perform consecutive modular multiplications in
the frequency domain.

An OEF element can be represented as a sequence by taking its ordered
coefficients. For instance,

a(x) = a0 + a1x + a2x
2 + . . . + am−1x

m−1 ,

52 S. Baktır and B. Sunar

which is an element of GF (pm), can be interpreted as the following d ≥ 2m− 1
sequence after appending d−m zeros to the right:

(a) = (a0, a1, a2, . . . , am−1, 0, 0, . . . , 0) . (7)

In this work we are interested in achieving arithmetic operations in the frequency
domain for the special class of OEFs GF (pm) where the field characteristic p
is a Mersenne prime divisor p = (2n − 1)/t for a positive integer t, m = n is a
prime number and the irreducible field generating polynomial f(x) = xm − 2 is
used. Furthermore, we will use the dth primitive root of unity r = −2 ∈ GF (p)
for the NTT computations which makes the sequence length d = 2m, since in
this case r = −2 is a (2m)th primitive root of unity in GF ((2n − 1)/t). When
p = Mn = 2n − 1, multiplication of an n-bit number with integer powers of 2
modulo Mn can be achieved with a simple bitwise left rotation of the n-bit num-
ber, e.g. multiplication of an n-bit number with 2i modulo Mn can be achieved
with a simple bitwise left rotation by i mod n bits. Similarly, multiplication of
an n-bit number with integer powers of −2 modulo Mn can be achieved with
a simple bitwise left rotation of the number, in addition to a negation if the
power of −2 is odd. Furthermore, negation of an n-bit number z modulo Mn can
simply be achieved by flipping all of its n bits, assuming 0 ≤ z ≤Mn. Likewise,
when p = Mn/t = (2n − 1)/t for a positive integer t, all intermediary arith-
metic operations can be efficiently achieved using Mersenne number arithmetic
modulo Mn and only the final result needs to be reduced modulo Mn/t. Hence,
all intermediary multiplications with integer powers of ±2 can be achieved with
a simple bitwise rotation, in addition to a negation if the power of r = −2 is odd.

OEF Addition/Subtraction in the Frequency Domain
Due to the linearity property of the NTT [8], operations in the time domain
such as addition/subtraction and multiplication by a scalar directly map to
the frequency domain, i.e., for any two sequences (a) and (b) representing el-
ements of GF (pm) in the time domain and for any two scalars y, z ∈ GF (p),
NTT(y · (a) ± z · (b)) = y · NTT((a)) ± z · NTT((b)) .

OEF Multiplication in the Frequency Domain
The DFT modular multiplication algorithm [5,7,6] (Algorithm 1) performs Mont-
gomery multiplication in GF (pm) in the frequency domain. To the best of
our knowledge, this algorithm is the only algorithm which achieves modular
multiplication in the frequency domain for OEFs relevant to ECC. A similar
algorithm for integers is presented in a later paper [16] for Montgomery multi-
plication of large integer operands, e.g. larger than 500 bits in length, to be used
in algorithms such as RSA [15]. Since the DFT modular multiplication algo-
rithm runs in the frequency domain, the parameters used in the algorithm are in
their frequency domain sequence representations. These parameters are the input
operands a(x), b(x) ∈ GF (pm), the result c(x) = a(x) · b(x) ·x−(m−1) ∈ GF (pm),
irreducible field generating polynomial f(x), normalized irreducible field generat-
ing polynomial fN (x) = f(x)/f(0), the sequence length d, and the indeterminate

Optimal Extension Field Inversion in the Frequency Domain 53

Algorithm 1. DFT modular multiplication algorithm for GF (pm)
Input: (A) ≡ a(x) ∈ GF (pm), (B) ≡ b(x) ∈ GF (pm)
Output: (C) ≡ a(x) · b(x) · x−(m−1) ∈ GF (pm)
1: for i = 0 to d − 1 do
2: Ci ← Ai · Bi

3: end for
4: for j = 0 to m − 2 do
5: S ← 0
6: for i = 0 to d − 1 do
7: S ← S + Ci

8: end for
9: S ← −S/d

10: for i = 0 to d − 1 do
11: Ci ← (Ci + FNi · S) · X−1

i

12: end for
13: end for
14: Return (C)

x. The time domain sequence representations of the polynomial parameters
are (a), (b), (c), (f), (fN) and (x), respectively, and their frequency domain se-
quence representations, i.e. the DFTs of the time domain sequence represen-
tations, are (A), (B), (C), (F), (FN) and (X). For the inputs a(x) · xm−1 and
b(x) · xm−1, both in GF (pm), the DFT modular multiplication algorithm com-
putes a(x) · b(x) · xm−1 ∈ GF (pm). Thus, it keeps the Montgomery residue rep-
resentation intact and allows for further computations in the frequency domain
using the same algorithm. For further information on DFT modular multiplica-
tion and its hardware implementation for ECC, the reader is referred to [5,6]
and [7], respectively.

3 Itoh-Tsujii Inversion in the Frequency Domain

We propose a direct adaptation of the Itoh-Tsujii algorithm to the frequency
domain for inversion in OEFs. As described in Section 2.1, Itoh-Tsujii inversion
involves a chain of multiplications and Frobenius map computations in GF (pm)
in addition to a single inversion in the base field GF (p). For the required GF (pm)
multiplications we propose using DFT modular multiplication. Since Frobenius
map computations can be achieved very easily in the time domain with simple
pairwise multiplications, we propose performing the Frobenius map computa-
tions in the time domain by applying the inverse NTT. Hence, back and forth
conversions are required between the frequency and time domains for the Frobe-
nius map computations.

For efficient computations, we propose using efficient parameters such as the
irreducible field generating binomial f(x) = xm − 2, p = (2n − 1)/t where n
is odd and equals the field extension degree m, d = 2m, and the dth primitive
root of unity as r = −2. Theorem 3 proves that for p = (2n − 1) and m = n,

54 S. Baktır and B. Sunar

Algorithm 2. Itoh-Tsujii inversion in GF (pm) in the frequency domain where
p = 2n − 1, n = 13 and m = n (for A, B ∈ GF (pm) and a positive integer
i, FrobeniusMap(A, i) denotes Api ∈ GF (pm) and DFTmul(A, B) denotes the
result of the DFT modular multiplication of A and B)
Input: (A) ≡ a(x) · xm−1 ∈ GF (pm)
Output: (B) ≡ a(x)−1 · xm−1 ∈ GF (pm)
1: // Compute M · a(x)r−1 · xm−1 ∈ GF (pm)
2: T1 ← FrobeniusMap(A, 1) // A(10)p

3: T1 ← DFTmul(T1, A) // A(11)p

4: T2 ← FrobeniusMap(T1, 2) // A(1100)p

5: T1 ← DFTmul(T1, T2) // A(1111)p

6: T2 ← FrobeniusMap(T1, 4) // A(11110000)p

7: T1 ← DFTmul(T1, T2) // A(11111111)p

8: T2 ← FrobeniusMap(T1, 4) // A(111111110000)p

9: T1 ← DFTmul(T2, T1) // A(111111111111)p

10: T2 ← FrobeniusMap(T1, 1) // A(1111111111110)p

11: // Compute M · a(x)r · xm−1 ∈ GF (pm)
12: T1 ← DFTmul(T2, A)
13: // Compute M−1 · (a(x)r)−1 ∈ GF (p)
14: A−r ← T1−1

0

15: // Compute a(x)−1 · xm−1 ∈ GF (pm)
16: for i = 0 to d − 1 do
17: Bi ← A−r · T2i

18: end for
19: Return (B)

f(x) = xm − 2 is irreducible over GF (p) for all practical values of p relevant to
ECC. Furthermore, in [6] a list of relevant binomials of the form f(x) = xm − 2
are presented and shown to be irreducible over GF (p) for many values of p =
(2n − 1)/t.

Theorem 3. [6] For a Mersenne prime p = 2n − 1 and for m = n, a binomial
of the form xm ± 2s, where s is an integer not congruent to 0 modulo n, is
irreducible in GF (p)[x] if m is not a Wieferich prime.

As noted in Section 2.2, when r = −2 and p = (2n − 1)/t, a modular multipli-
cation in GF (p) with a power of r can be achieved very efficiently with a simple
bitwise rotation in addition to a negation if the power is odd. Furthermore, it
is shown in [7] that for the case of r = −2, odd m and n = m, i.e. when the
bit length of the field characteristic p = 2n − 1 is equal to the field extension
degree, DFT modular multiplication can be optimized by precomputing some
intermediary values in the algorithm. Note that when r = −2, p = (2n − 1)/t,
the field generating polynomial is f(x) = xm−2 and hence fN(x) = − 1

2 ·xm +1,
m is odd and m = n, the following equalities

FNi = −1
2
· (−2)mi + 1 =

{− 1
2 + 1 = 1

2 , i even

1
2 + 1 , i odd

(8)

Optimal Extension Field Inversion in the Frequency Domain 55

Table 1. List of some parameters for efficient inversion in the frequency domain

n p = (2n − 1)/t m d r equivalent binary field size

13 8191/1 13 26 −2 ∼ 2169

17 131071/1 17 34 −2 ∼ 2289

19 524287/1 19 38 −2 ∼ 2361

23 8388607/47 23 46 −2 ∼ 2401

hold in GF (p) since (−2)mi ≡ (−2)ni ≡ (−1)ni(2n)i ≡ (−1)ni (mod p). In this
case FNi has only two distinct values, namely − 1

2 + 1 = 1
2 and 1

2 + 1. Hence,
FNi ·S in step 11 of Algorithm 1 can attain only two values for any distinct value
of S and these values can be precomputed outside the loop avoiding all such
computations inside the loop. The precomputations can be achieved efficiently
with only one bitwise rotation and one addition. Taking these optimizations into
account, in DFT modular multiplication one needs to perform 2m multiplications
in step 2, (2m− 1)(m− 1) additions in step 7, m− 1 constant multiplications in
step 9, m−1 bitwise rotations and m−1 additions for the computations of FNi ·S
in step 11, 2m(m−1) additions for the additions of Ci with FNi ·S in step 11 and
2m(m−1) bitwise rotations for multiplications with X−1

i in step 11, all in GF (p),
totaling a complexity of 2m multiplications, m − 1 constant multiplications,
4m2 − 4m additions and 2m2 −m− 1 bitwise rotations as presented in Table 2.
Remember that, in a d-element NTT over GF (p) with a dth primitive root of
unity r, the values of the parameters r, d and p are dependent on each other and
the equality GCD(d, p) = 1 holds for the greatest common denominator of d and
p, and hence the inverse of d in GF (p), required in step 9 of Algorithm 1, always
exists. A list of some efficient parameters suited for ECC are given in Table 1.

In Algorithm 2, we present the frequency domain Itoh-Tsujii algorithm ex-
emplarily for the finite field GF (pm) with p = 213 − 1 and m = 13. Note in Al-
gorithm 2 that, for A, B ∈ GF (pm) and a positive integer i, FrobeniusMap(A,i)
denotes the ith Frobenius map of A and equals Api

, and DFTmul(A,B) denotes
the DFT modular multiplication of A and B. Ar−1 is computed in steps 2− 10
of the algorithm with four multiplications and five pi-th power exponentiations
in GF (pm), by using two temporary variables. However, there is a trade-off
between the amount of temporary storage requirement and the required num-
ber of multiplications and Frobenius map computations. In the computation of
Ar−1, one can always minimize the number of required temporary variables to
one by using an alternating chain of p-th power exponentiations and multipli-
cations with A, e.g., in Algorithm 2 Ar−1 can be computed with the following
chain of computations T 1 = A(10)p , T 1 = A(11)p , T 1 = A(110)p , T 1 = A(111)p ,
T 1 = A(1110)p , T 1 = A(1111)p , T 1 = A(11110)p , T 1 = A(11111)p , T 1 = A(111110)p ,
T 1 = A(111111)p , T 1 = A(1111110)p , T 1 = A(1111111)p , T 1 = A(11111110)p , T 1 =
A(11111111)p , T 1 = A(111111110)p , T 1 = A(111111111)p , T 1 = A(1111111110)p , T 1 =
A(1111111111)p , T 1 = A(11111111110)p , T 1 = A(11111111111)p , T 1 = A(111111111110)p ,

56 S. Baktır and B. Sunar

T 1 = A(111111111111)p and T 1 = A(1111111111110)p by performing eleven multi-
plications with A and twelve p-th power exponentiations in GF (pm). We would
like to note here that DFT modular multiplications in Algorithm 2 keep the
Montgomery residue representation intact, but each Frobenius map computa-
tion adds an additional factor to the result. However, we will see in detail later
in this section that these additional factors cancel out within the algorithm.

Frobenius Map Computations
We have seen in Section 2 that, when the field extension degree m is prime and
the field generating polynomial is a binomial, Frobenius map computation in
the time domain is a simple fixed pairwise multiplication of the polynomial co-
efficients. Therefore, in Itoh-Tsujii inversion we will convert a frequency domain
sequence to the time domain before computing its Frobenius endomorphism and
come back to the frequency domain afterwards as shown in Algorithm 3. For
d = 2m, since the time domain sequences have zeros as their higher ordered m
elements, the NTT computations in Algorithm 3 can be simplified. Furthermore,
since d = 2m is composite, the performance of the NTT can be improved by
utilizing the fast Fourier transform (FFT) [9] for a single level. We present the
equivalent single level FFT computation for the inverse NTT operation with (9),
and for the forward NTT computation with (10) and (11). Note that (10) and
(11) are equivalent, except for the sign between the two summations. For more
information on the FFT in OEFs, the reader is referred to [6,4].

ai =
2
d
·

m−1∑
j=0

A2jr
−2ij , 0 ≤ i ≤ m− 1 . (9)

Aj =

m−1
2∑

i=0

a2ir
2ij + rj

m−3
2∑

i=0

a2i+1r
2ij , 0 ≤ j ≤ m− 1 . (10)

Aj+m =

m−1
2∑

i=0

a2ir
2ij − rj

m−3
2∑

i=0

a2i+1r
2ij , 0 ≤ j ≤ m− 1 . (11)

As mentioned in Corollary 1, when m is prime and f(x) = xm−w is irreducible
over GF (p), the equality (xj)pi

= wtxj (mod f(x)), where t = jpi−j
m , holds.

Hence, the Frobenius coefficients do not need to be permuted. Furthermore,
when p = (2n − 1)/t, m = n is prime and f(x) = xm − 2, the following equality
holds for the jth coefficient of the ith iterate of the Frobenius map

wt = 2
jpi−j

m = 2
j(pi−1)

m = 2j(pi−1+pi−2+···+p+1) p−1
m .

Due to the first condition of Theorem 1, since f(x) = xm − 2 is irreducible in
GF (p), m|ord(2) and hence m|(p−1). Thus, the above Frobenius map coefficients

Optimal Extension Field Inversion in the Frequency Domain 57

are all powers of 2 and multiplications by these coefficients can be achieved with
m− 1 simple bitwise rotations as shown in step 5 of Algorithm 3. In Algorithm 3,
FrobeniusMapCoefficient(i, j) equals j(pi−1)

m mod n and denotes the amount of
bitwise left-rotations to be performed on the jth coefficient of the time domain
sequence to achieve the ith iterate of the Frobenius map. With all the above men-
tioned optimizations utilized, the complexity of Algorithm 3 in terms of GF (p)
operations is m constant multiplications, m2− 2m+1 fixed bitwise rotations and
m2 −m additions for the inverse NTT computation, m2 − 2m + 1 fixed bitwise
rotations and m2 additions/subtractions for the forward NTT computation and
m− 1 fixed bitwise rotations for the Frobenius map computation, totaling m con-
stant multiplications, 2m2 − 3m + 1 fixed bitwise rotations and 2m2 − m addi-
tions/subtractions, as given in Table 2. Note that, in Algorithm 2, DFTmul(A, B)

Algorithm 3. Frobenius map computation in GF (pm) in the frequency domain
when p = (2n − 1)/t, and the irreducible field generating polynomial is f(x) =
xm − 2 (FrobeniusMapCoefficient(i, j) = j(pi−1)

m mod n)

Input: i, (A) ≡ a(x) · xm−1 ∈ GF (pm)

Output: (B) ≡ (a(x) · xm−1)pi ∈ GF (pm)
1: // Compute the time domain representation (a) of (A) using the inverse NTT
2: (a) ← InverseNTT((A))
3: // Perform pairwise multiplications through simple bitwise rotations
4: for j = 1 to m − 1 do
5: aj ← aj << FrobeniusMapCoefficient(i, j) // left rotate the bits of aj

6: end for
7: // Compute the frequency domain representation (A) of (a) using the NTT
8: (A) ← NTT((a))
9: Return ((A))

function which computes the DFT Montgomery multiplication of (A) and (B)
keeps the Montgomery representation with the multiplicative factor xm−1 in-
tact, however FrobeniusMap(A, i) function which computes the ith iterate of
the Frobenius endomorphism on (A) adds an additional term to the multi-
plicative factor xm−1. Remember in Corollary 1 that when m is prime and
f(x) = xm − 2, the ith iterate of the Frobenius endomorphism on xm−1 re-
sults in (xm−1)pi

= 2txm−1 where t = (m−1)pi−(m−1)
m . Through the Frobenius

map computations in Algorithm 2, the additional multiplicative factors 2t ac-
cumulate to some value M until the computation of Ar−1 in step 10. Thus,
in step 12, the computed value T 1 corresponds to some time domain value
M ·a(x)r ·xm−1. Note that the ith coefficient of the NTT of M ·a(x)r ·xm−1 is equal
to T 1i = M ·a(x)r ·ri(m−1) and thus T 10 = M ·a(x)r . Hence, M ·a(x)r ∈ GF (p)
can be obtained by looking at the 0th coefficient of T 1. In step 14, by tak-
ing the inverse of T 10, T 1−1

0 = M−1 · a(x)−r , rather than the desired value
a(x)−r, is obtained. However, the M−1 factor cancels out in the last step, i.e. in

58 S. Baktır and B. Sunar

Table 2. Complexities of Algorithm 1, Algorithm 2, Algorithm 3 and time domain
Itoh-Tsujii inversion (ITI) in GF (pm), when f(x) = xm − 2, p = (2n − 1)/t, m = n is
odd and d = 2m, in terms of the number of GF (p) operations, where the numbers of
required multiplications, constant multiplications, additions/subtractions and rotations
in GF (p) are denoted by #M, #CM, #A/S and #R, respectively (Δ = �log2(m −
1)� + HW (m− 1)).

#M #CM #A/S #R

Algorithm 1: 2m m − 1 4m2 − 4m 2m2 − m − 1

Algorithm 2: 2mΔ + 4m − 2 2mΔ − Δ 6m2Δ − 5mΔ 4m2Δ − 4mΔ

Algorithm 3: − m 2m2 − m 2m2 − 3m + 1

ITI (time): m2Δ − m2 − m2Δ − m2 2mΔ − m

+4m − 2 −mΔ + 2m − 1 −2Δ + 2

step 17, when this false value of A−r corresponding to M−1 ·a(x)−r is multiplied
with the false value of Ar−1 in T 2 corresponding to M · a(x)r−1 · xm−1 to give
us the expected correct result which is the frequency domain representation of
a(x)−1 · xm−1 ∈ GF (pm).

Inversion in GF (p)
We propose using Fermat inversion for performing the single inversion in GF (p)
required in step 14 of Algorithm 2. For an n-bit prime p, this inversion can be
conducted by taking the (p− 2)nd power of the operand through a square-and-
multiply chain with no more than n− 1 multiply and n− 1 square operations in
GF (p).

Complexity of Itoh-Tsujii Inversion in the Frequency Domain
As described with Algorithm 2 for the exemplary finite field GF (pm) with p =
213− 1 and m = 13, Itoh-Tsujii algorithm achieves inversion utilizing a chain of
multiplications and Frobenius map computations. We have seen that when the
field generating polynomial is f(x) = xm−2, p = (2m−1)/t, d = 2m and r = −2
is used as the dth primitive root of unity, DFT modular multiplication and
Frobenius endomorphism operations can be achieved extremely efficiently with
the complexities given in Table 2. Using these complexities and remembering the
number of each operation required in Itoh-Tsujii inversion, as given in Section 2,
and exemplarily for GF (p13) with Algorithm 2, one can obtain the complexity
of Itoh-Tsujii inversion in the frequency domain as given in Table 2.

Optimal Extension Field Inversion in the Frequency Domain 59

Table 3. Complexities of Itoh-Tsujii inversion in GF (p13) in the time and frequency
domains in terms of the number of GF (p) operations for f(x) = x13−2 and p = 213−1

Frequency Domain Time Domain

#Multiplications 180 726
#Constant Multiplications 125 −
#Additions/Subtractions 4745 636
#Fixed Rotations 3120 109

Fig. 1. Number of required clock cycles for inversion in GF (pm) in the time and fre-
quency domains assuming addition and bitwise-rotation in GF (p) take a single clock
cycle and multiplication in GF (p) takes k clock cycles

Multiplication operation is inherently more complex and usually takes more
clock cycles to run in hardware. In many modern microprocessors, in order to
achieve higher clock rates deeper pipelines are designed in the processor mi-
croarchitectures which results in significant differences in the number of clock
cycles needed for different instructions. For instance, in the processor microar-
chitecture of Pentium 4 the latency is only half a clock cycle for a simple 16-bit
integer addition, 1 clock cycle for a 32-bit integer addition and 14 clock cycles
for a 32-bit integer multiplication [11]. As shown in Table 3 for the exemplary
finite field, Itoh-Tsujii algorithm requires a dramatically less number of base
field multiplications in the frequency domain than in the time domain. There-
fore, it may be desirable to utilize frequency domain inversion in computational
environments where multiplication is expensive compared with other operations
such as addition and bitwise rotation.

60 S. Baktır and B. Sunar

In order to see the cross-over points between the performances of time and
frequency domain Itoh-Tsujii algorithms for different multiplication/addition
latency ratios k and different field extension degrees m, in Figure 1 we present
the total number of clock cycles it takes to achieve inversion with both methods
assuming a base field addition/subtraction or bitwise-rotation operation takes
only 1 clock cycle to complete and a base field multiplication operation takes
k clock cycles. As we can see in the graph, for small multiplication/addition
latency ratios inversion in the time domain performs clearly better. For the field
extension degree of m = 13, the cross-over point is at around k = 14, and hence
the latency ratio k should be at least 14 for Itoh-Tsujii inversion in GF (p13) to
perform better in the frequency domain. As the field extension degree m gets
larger, frequency domain inversion starts performing better at smaller latency
ratios.

4 Conclusion

In this paper we gave an overview of previous work on finite field multiplication
in the frequency domain for efficient implementation of ECC. Earlier studies
on frequency domain finite field arithmetic lacked inversion, therefore ECC in
the frequency domain was implemented only with the projective coordinates
with more storage requirement and possibly degraded performance. With this
work we proposed an adaptation of the Itoh-Tsujii inversion algorithm to the
frequency domain which will make affine coordinate implementation of ECC
possible in the frequency domain potentially resulting in less storage requirement
and improved performance. To the best of our knowledge, this is the first time
a frequency domain inversion algorithm is proposed for implementation of ECC
in the frequency domain using affine coordinates.

Acknowledgements

This work was supported by NSF CAREER award ANI-0133297. We would
like to thank the anonymous reviewer whose detailed comments and suggestions
helped improve the quality of this paper.

References

1. Bailey, D.V., Paar, C.: Optimal Extension Fields for Fast Arithmetic in Public-Key
Algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485.
Springer, Heidelberg (1998)

2. Bailey, D.V., Paar, C.: Efficient Arithmetic in Finite Field Extensions with Ap-
plication in Elliptic Curve Cryptography. Journal of Cryptology 14(3), 153–176
(2001)

3. Baktır, S.: Efficient Algorithms for Finite Fields, with Applications in Elliptic
Curve Cryptography. Master’s thesis, Electrical and Computer Engineering De-
partment, Worcester Polytechnic Institute, Worcester, MA, USA (April 2003)

Optimal Extension Field Inversion in the Frequency Domain 61

4. Baktır, S., Sunar, B.: Achieving Efficient Polynomial Multiplication in Fermat
Fields Using the Fast Fourier Transform. In: Proceedings of the 44th ACM South-
east Conference (ACMSE 2006), March 2006, pp. 549–554. ACM Press, New York
(2006)

5. Baktır, S., Sunar, B.: Finite Field Polynomial Multiplication in the Frequency
Domain with Application to Elliptic Curve Cryptography. In: Levi, A., Savaş, E.,
Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 991–
1001. Springer, Heidelberg (2006)

6. Baktır, S., Sunar, B.: Frequency Domain Finite Field Arithmetic for Elliptic Curve
Cryptography (preprint, 2007),
http://www.wpi.edu/∼selcuk/DFTmultExpanded preprint.pdf

7. Baktır, S., Kumar, S., Paar, C., Sunar, B.: A State-of-the-art Elliptic Curve Cryp-
tographic Processor Operating in the Frequency Domain. Mobile Networks and
Applications (MONET) 12(4), 259–270 (2007)

8. Burrus, C.S., Parks, T.W.: DFT/FFT and Convolution Algorithms. John Wiley
& Sons, Chichester (1985)

9. Cooley, J., Tukey, J.: An Algorithm for the Machine Calculation of Complex Fourier
Series. Mathematics of Computation 19, 297–301 (1965)

10. Guajardo, J., Paar, C.: Itoh-Tsujii Inversion in Standard Basis and Its Application
in Cryptography. Design, Codes, and Cryptography (25), 207–216 (2002)

11. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., Roussel, P.:
The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal Q1
(2001)

12. Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverses in
GF (2m) Using Normal Bases. Information and Computation 78, 171–177 (1988)

13. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Addison-Wesley, Reading (1983)

14. Pollard, J.M.: The Fast Fourier Transform in a Finite Field. Mathematics of Com-
putation 25, 365–374 (1971)

15. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

16. Saldamlı, G., Koç, Ç.K.: Spectral Modular Exponentiation. In: Proceedings of the
18th IEEE Symposium on Computer Arithmetic (2007)

17. Woodbury, A., Bailey, D.V., Paar, C.: Elliptic Curve Cryptography on Smart Cards
without Coprocessors. In: IFIP CARDIS 2000, Fourth Smart Card Research and
Advanced Application Conference, Bristol, UK, September 20–22, 2000. Kluwer,
Dordrecht (2000)

Efficient Finite Fields in the Maxima Computer

Algebra System

Fabrizio Caruso, Jacopo D’Aurizio, and Alasdair McAndrew

Dipartimento di Matematica L. Tonelli,
Università di Pisa, Pisa, Italy

caruso@dm.unipi.it

elianto84@gmail.com

http://www.dm.unipi.it

School of Computer Science and Mathematics,
Victoria University, Melbourne, Australia

Alasdair.McAndrew@vu.edu.au

http://sci.vu.edu.au

Abstract. In this paper we present our implementation of finite fields
in the free and open Maxima computer algebra system. In the first ver-
sion of our package we focused our efforts on efficient computation of
primitive elements and modular roots. Our optimizations involve some
heuristic methods that use “modular composition” and the generalized
Tonelli-Shanks algorithm. Other open and free systems such as GP/Pari
do not include in their standard packages any support for finite fields.
The computation of the primitive element in Maxima is now faster than
in Axiom. Our package provides a more user-friendly interface for teach-
ing than other comparable systems.

Keywords: finite fields, primitive element, modular roots, Maxima.

1 Introduction

We present our implementation of efficient arithmetic over finite fields in the free
and open computer algebra system Maxima[18]. Our implementation is part of
the standard Maxima system since version 5.14. Maxima is a general purpose
computer algebra system that is distributed under GPL (GNU General Public
License). It is a very old system with a large number of developers and users
that contains libraries in many fields of mathematics. It depends internally on
a Common Lisp interpreter but at the same time provides a higher level func-
tional language, which we used to implement our library. The first version of the
library was based on the paper [17], which describes a package on finite fields for
Maxima’s ancestor (Macsyma), whose source code is long gone. When used for
teaching [12] if compared to Axiom, our package provides a more user-friendly
interface.

Our library assumes that a representation of a finite field is given as a vector
space over Fp

Fpn := Fp[x]/ (f(x)) , (1)

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 62–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Finite Fields in the Maxima Computer Algebra System 63

where f(x) is a monic and irreducible polynomial of degree n; every element is
represented in the monomial (power) base

{
xi

}n−1

i=0
.

At the moment the library consists of a part dealing with general Fpn fields
and a second part related to modular roots, dealing with Fp fields.

The main package (gf.mac) contains functions for basic arithmetic opera-
tions, exponentiation, computation of the primitive element, discrete logarithm,
minimal polynomial, normal bases and linear algebra over finite fields. In order
to reduce the time needed to find a primitive element, some techniques that
involve “modular composition” ([1] and [21]) and some heuristic methods have
been used.

The second part of the package (gf roots.mac) contains efficient implemen-
tations of the Cipolla-Lehmer algorithm based on field extension with the im-
provements by Müller (see [4], [11], [15], for an equivalent algorithm see [14]) and
the Tonelli-Shanks algorithm ([19], [23]). The former is used for the quadratic
and cubic case, whereas the latter is used for the cubic and general case.

Most computer algebra systems such as GP/Pari [7] have no native support
for finite fields. Other free and open systems such as Axiom [10] do have some
support but lack some of the features offered by our package (e.g. modular roots)
and the performance in some areas (e.g. primitive element).

2 The Algorithms

The algorithms implemented in the library deal with the main operations related
to finite fields, such as basic arithmetic operations, exponentiation, primitive
element, logarithms, minimal polynomial, normal bases, linear algebra over finite
fields, modular roots. In this section we shortly describe a few of them and give
some details on the computation of the smallest primitive element and of modular
roots.

2.1 Basic Arithmetic Operations

All the basic operations such as addition, subtraction, inverse, multiplication and
division have been implemented. As far as the multiplication of polynomials is
concerned, the Karatsuba fast multiplication algorithm (provided by the Maxima
built-in command fasttimes) has been used.

2.2 Exponentiation

The exponentiation is done by either repeated squaring or by factoring the ex-
ponent and then by repeated squaring on its factors. Factoring the exponent can
reduce the number of products required (for exponents whose binary represen-
tation has at least four 1s). In practice reducing the number of multiplications
is not the only thing to be taken into consideration: squaring and multiplying
do not have the same cost and factoring large exponents becomes costly.

Other approaches based on the construction of a suitable addition chain (per-
forming better than the binary one, even by allowing subtractions) do not seem to
provide any significant improvement for characteristics of moderate size (< 231).

64 F. Caruso, J. D’Aurizio, and A. McAndrew

2.3 Primitive Element

A primitive element is a generator of the multiplicative group F∗
pn , which has

order pn−1. Given a factorization of pn−1 = pw1
1 pw2

2 . . . pwt
t , we find the smallest

primitive element with respect to our representation by iteratively exponentiat-
ing to (pn − 1)/pi for i = 1 . . . t.

As proven by Wang in [24], if we assume the extended Riemann hypothesis we
can find the smallest primitive element with respect to the lexicographic ordering
in polynomial time. For more details and more refined bounds we refer to [21].

It is therefore important to optimize the linear case. We do this by “modular
composition” in that we follow Brickell’s approach [1] i.e. we use some precom-
putation and Fermat’s Little Theorem.

In order to compute (x + a)k we proceed as follows

1. We (pre-)compute xp, x2p, . . . , x(n−1)p.
2. We (pre-)compute xpi

.
3. We write the exponent k in base p : k =

∑m
i=0 kip

i.
4. We compute (x + a)k:

(x + a)k = (x + a)
m
i=0 kip

i

=
m∏

i=0

(xpi

+ a)ki . (2)

In order to check that an element of F∗
pn has maximum order through succes-

sive non-residuosity tests, when selecting the prime factors p̄j of pn − 1 that
are also factors of p − 1 (so that the exponent in base p has all its digits
qj := (p− 1)/p̄j), we perform the following operations

(x + a)
n−1
i=0 qjpi

=

(
n−1∏
i=0

(xpi

+ a)

)qj

= ((−1)nf(−a))qj , (3)

saving a great amount of time. When dealing with elements of higher degree (as
it probably happens in Fpn , if p is small enough) instead of doing a more costly
precomputation we apply the repeated-squaring algorithm.

Heuristics for the Precomputation. Precomputing xpi

has a moderate cost
which in a few predictable cases is higher than the improvement that it brings.
These few cases occur when the number of distinct primes dividing pn − 1 is
smaller than a given threshold, which in our empirical experiments with our
implementation is around 3. This is justified by the fact that the precomputation
of xpi

is much more effective when the number of tests

g
pn−1

pj �= 1

required to grant that an element g has maximum order is sufficiently high.

Efficient Finite Fields in the Maxima Computer Algebra System 65

2.4 Discrete Logarithm

The discrete logarithm is computed by using the Pohlig-Hellman algorithm (see
[16] for more details). Fundamentally, the algorithm solves the discrete logarithm
problem in F∗

pn

ax = b

by first factoring
pn − 1 = en1

1 en2
2 · · · enk

k ,

then solving the logarithm problem separately for each prime dividing the order
of F∗

pn

by = a
pn−1
e

ni
i ,

and finally collecting all the solutions using the Chinese remainder theorem.
The logarithms of the prime powers can be found using a fairly straightforward
process. This algorithm is most efficient when all the factors ei are small. A good
account of this algorithm is in Yan [25].

2.5 Minimal Polynomials

Minimal polynomials are computed using a technique described by McEliece
[13]. In a field Fpn , the order of an element x, denoted ord(x) is the smallest
value m for which xm = 1. The degree of x is the smallest positive integer d for
which

pd = 1 (mod ord(x)).

The minimal polynomial for x is then

f(z) = (z − x)(z − xp) · · · (z − xpd−1
).

2.6 Square Roots in Fp

For the computation of modular square roots we use the Cipolla-Lehmer algo-
rithm ([4], [11], [14]) with the improvements due to Müller [15].

If a is a quadratic residue in Fp we have a(p−1)/2 ≡ 1 (mod p), or, denoting
with L the Legendre symbol, L(a, p) = 1. In such a case, if L(b2 − 4a, p) = −1,
the polynomial x2 + bx + a is irreducible over Fp, with its roots σ and σ̄ lying
in the extension Fp[x]/(x2 + bx + a), and satisfying⎧⎨⎩

σ + σ̄ = −b
σ σ̄ = a
σp = σ̄

So it is possible to bring the square root extraction problem into an exponentia-
tion problem over a quadratic extension of the base field, through the following
identity: (

σ̄
p+1
2

)2

≡
(
σ

p+1
2

)2

≡ a (mod p).

66 F. Caruso, J. D’Aurizio, and A. McAndrew

By defining Vk and M as

Vk = σk + σ̄k; M =
(

0 −a
1 −b

)
(4)

we have that
Vk = Tr

(
Mk

)
. (5)

So, by the Cayley-Hamilton theorem

Vn+2 + bVn+1 + aVn = 0,

{Vi} is a Lucas sequence in Fp that can be efficiently evaluated in a single point
(in our case V p+1

2
) with a classical repeated-squaring scheme: if F ∈ GLn(Z) is a

companion matrix with characteristic polynomial xn−∑n
i=1 aix

i−1, in the form

Fei = ei+1 for i ≤ n− 1,

F en = (a1, a2, . . . , an)T ,

for 2 ≤ m ≤ n we have

(F kem)1 = a1 · (F kem−1)n,

(F kem)i = (F kem−1)i−1 + ai · (F kem−1)n.

F is a rank-1 correction of a circulant matrix representing the permutation

(x1, x2, . . . , xn−1, xn) −→ (x2, x3, . . . , xn, x1).

Therefore the knowledge of the first column of the matrix F k allow us to iter-
atively reconstruct all the elements of F k, column by column. In the quadratic
case, every power of M has the following structure:(

A −aB
B A− bB

)
(6)

and there is no need to explicitely store the elements in the second column. In
order to perform the computation of Mk (that leads to Vk) through a binary
addition chain, we must analyze how the chosen parameters (A, B) transform
under the maps

(Q-step) N −→ N2

(QM-step) N −→ N2 ·M
where N is a structured matrix like in (6). In particular, we start with the
identity matrix (A = 1, B = 0), traversing the binary representation of the
exponent k from left to right, performing a Q-step every time we encounter a
bit 0, a QM-step every time we encounter a bit 1.

– Q-step: {
A −→ A2 − aB2

B −→ 2AB − bB2

Efficient Finite Fields in the Maxima Computer Algebra System 67

– QM-step: {
A −→ −aB(2A + bB)
B −→ (A + bB)2 − aB2

The number of multiplication (in Fp) needed to perform a single Q-step or QM-
step with such a scheme (in our implementation it is known as msqrt) is just
5. However, directly exploiting the property (4) of the Lucas sequence {Vi} it is
not difficult to argue that {

V2k = V 2
k − 2ak

V2k+1 = VkVk+1 + bak (7)

We may also note that if p ≡ 3 (mod 4) there is no need to work in a field
extension, because (

a
p+1
4

)2

= a
p+1
2 = a L(a, p) = a.

In the difficult case p ≡ 1 (mod 4), having a = 1 in (7) would allow to reduce
the number of multiplications needed in a single step: this is the main idea of
[15] algorithm. Let us define:

bt = at2 − 2; pt(x) = x2 + btx + 1.

pt is irreducible over Fp iff L(at2 − 4, p) = −1; in that case its roots ζ, ζ̄ satisfy

ζ(2 − at2) = ζ(ζ + ζ̄) = ζ2 + 1,

ζ(4− at2) = (ζ + 1)2,

(4 − at2) · L(at2 − 4, p) · ζ p+1
2 = (ζ + 1)(ζ̄ + 1) = 2 + (ζ + ζ̄),

ζ
p+1
2 = −1 = ζ̄

p+1
2 ,

V 2
p−1
4

= 2 + ζ
p−1
2 + ζ̄

p−1
2 = 2 + ζ̄ζ

p+1
2 + ζζ̄

p+1
2 = 2− (ζ + ζ̄) = at2.

Hence t−1V p−1
4

is a square root of a in Fp and can be computed in at most
2 log2(p) multiplications in Fp (an implementation of the Müller algorithm will
be included in the next release of our package, available with Maxima 5.15[18]).
The hardest part may be to search for a suitable quadratic non-residue in the
form at2 − 4; however, under reasonable probabilistic assumptions, the cost of
such pre-processing does not affect the general complexity (for details, see [15]).

2.7 Cube Roots in Fp

For the computation of modular cubic roots we have implemented the generalized
Tonelli-Shanks and the Cipolla-Lehmer algorithm. The former is preferable in
most cases unless a particular sparse irreducible polynomial is known or can be
found easily.

68 F. Caruso, J. D’Aurizio, and A. McAndrew

Cubic Tonelli-Shanks. For p ≡ 2 (mod 3) the set of cubic residues is the
whole F∗

p, and
3
√

a = a
2p−1

3

holds. If p ≡ 1 (mod 3) the set of cubic residues has cardinality (p− 1)/3, and
a is a cubic residue iff a

p−1
3 = 1.1 If p ≡ 7 (mod 9) we have(

a
p+2
9

)3

= a · a p−1
3 = a;

and for p ≡ 4 (mod 9) (
a

2p+1
9

)3

= a ·
(
a

p−1
3

)2

= a.

In case that p ≡ 1 (mod 9) we consider the partial factorization

p− 1 = 3s q (s ≥ 2, 3 � q)

and take a cubic non-residue b; bq has order 3s in F∗
p. If q ≡ 1 (mod 3) we set

r = a
q−1
3 , t = a r3 to have

t3
s ≡ 1 (mod p).

As a consequence, there is an index 1 ≤ j ≤ s for which

t = (bq)3
j

or t = (bq)2·3
j

.

We can find j by counting how many iterations of the map c(t) : t → t3 are
needed to bring the initial value of t to 1; once j is known

a =
(
r−1 · (bq)3

j−1
)3

or a =
(
r−1 · (bq)2·3

j−1
)3

.

If q ≡ −1 (mod 3) we set r = a
q+1
3 , t = a−1 r3 to obtain, in a similar fashion

a =
(
r · (bq)−3j−1

)3

or a =
(
r · (bq)−2·3j−1

)3

.

This generalization of the original Shanks algorithm, which will be implemented
through the function gf cbrt in the next release of our package, is very powerful;
we underline that we have already collected a primitive third root of unity in
F∗

p, exactly during the non-cubic residue test for b:

ω =
−1±√−3

2
= (bq)3

s−1

= b
p−1
3 .

1 For our purposes we simply perform an exponentiation; an efficient test could be
implemented using the generalized Legendre symbol and the cubic reciprocity law:
one needs to find two integers q1, q2 such that p = q2

1 + q1q2 + q2
2 , for which the

function csplit is designed.

Efficient Finite Fields in the Maxima Computer Algebra System 69

Cubic Field Extension. In order to have a cube root of a we may also find
a monic irreducible polynomial over Fp, p(x) = x3 − ∑3

i=1 aix
i−1, with the

constant term a1 = ±a, and compute V p2+p+1
3

, or, equivalently, M
p2+p+1

3 , where

M is the companion matrix associated with p(x). However, once we take p(x) in
an almost-general form (like a3 = 0), even by choosing a proper representation
for the powers of M , we have no chance to achieve a global complexity2 of Õ(k)
multiplications in Fp. We have developed an algorithm (mcbrt) that computes
V p2+p+1

3
through repeated squarings, under the assumption3 p(x) = x3 + bx + a,

operating only on A = (Mk)(2,2), B = (Mk)(2,3), C = (Mk)(3,2) as follows:

– Q-step: ⎧⎨⎩
A −→ A2 + C(2B + bC)
B −→ 2AB − aC2

C −→ 2AC + a−1(B + bC)2

– QM-step: ⎧⎨⎩
A −→ 2AB − aC2

B −→ (B + bC)2 − 2aAC − b(A2 + C(2B + bC))
C −→ A2 + C(2B + bC)

The weight of a single step (both Q and QM) is 10 multiplications in Fp. In
order to develop something more efficient (magnitude Õ(k) multiplications) one
should look for small irreducible polynomials (trinomials, or polynomials with
the most of their coefficients lying in the interval [−2, 2]): to search for such el-
ements could be quite expensive, while the generalized Shanks algorithm works
at comparable speed, requiring only a cubic non-residue to be given. Unsurpris-
ingly enough, in the quadratic case we notice an almost opposite behavior, with
field extension approach having shorter running times than the original Tonelli-
Shanks algorithm; we may also conjecture that the quadratic case is the only for
which field-extension, matrix-based methods are really useful.

2.8 Generalized Shanks Algorithm for k-th Roots

Assuming that k is an odd prime, we have that the k-th root extraction problem
in Fp has a certain number of trivial cases:

– If p �≡ 1 (mod k), every element of F∗
p is a k-th residue; by taking h as the

inverse of k in Z∗
(p−1) we have (ah)k = a.

– If p ≡ 1 (mod k) but p �≡ 1 (mod k2), a is a k-th residue iff a
p−1

k ≡ 1 (mod p);
by taking h as the inverse of 1−p

k in F∗
p we have(

a
hp+(k−h)

k2

)k

= a ·
(
a

p−1
k

)h

= a.

2 We recall that the Õ-notation hides factors that are logarithmic in the argument,
for example 3k log(k) log(log(k)) ∈ Õ(k).

3 We recall that an efficient irreducibility test for cubic polynomials over Fp is the
Stickelberger criterion [22]: p(x) = x3 + bx + a is irreducible iff its discriminant D
is a quadratic residue and 2(

√
D + 3aω)2 is not a cubic residue.

70 F. Caruso, J. D’Aurizio, and A. McAndrew

In the last case, p ≡ 1 (mod k2), if a is a k-th residue we find s and q such that

p− 1 = ks q, s ≥ 2, k � q,

then look for a prime b that is not a k-th residue (it is useless to test composite
integers: if all the integer divisors of b are k-th residues, b is a k-th residue too)
to compute bq, a primitive ks-th root of unity. By denoting with q̄ the smallest
integer for which q ≡ q̄ (mod p), and defining r and t as

r = a
q−q̄

k , t = aq̄ · rk,

we have that the repeated application of the map ϕk(x) : x → xk leads to the
determination of two integers i and w satisfying

aq̄ · rk = t = (bq)w·ki

, 1 ≤ i ≤ s, w < k.

So the problem is solved up to an inversion and a q̄-th root extraction in Fp;
denoting with C(k) the number of multiplications needed to find a k-th root we
have

C(k) ≤ k + log2(p) + C(k/2) ≤ 2(k + log2(k) log2(p)).

An implementation of the generalized Shanks algorithm will appear in the next
release of our Maxima package.

3 The Library

In order to use the library it is enough to use Maxima 5.14 or any above version.
Some routines related to general modular roots, which we have discussed in the
previous section, will be available together with other features and improvements
only starting from Maxima 5.15.

The library is written in the Maxima high level language. Its source code is
distributed together with Maxima and it is found in

<maxima path>/share/contrib/gf/.

Here we give a short description of only some of the functions; for a more
detailed manual we refer to the online manual [2] which is available at

http://www.dm.unipi.it/~caruso.

3.1 Loading

The whole library is loaded with load(gf). If Maxima 5.14 is used the additional
command load(gf root) is required to load the functions related to modular
roots.

3.2 Defining a Finite Field

In order to start up, we must first define our current finite field and its repre-
sentation as (1). We do this with the gf set(p,fx) command where

Efficient Finite Fields in the Maxima Computer Algebra System 71

– p is the characteristic,
– fx is the monic irreducible polynomial in x generating the field extension.

This command has the following effects that depend on the value of the global
variable largefield which is set to true by default:

– the global variables gf char, gf exp and gf irr are set;
– if the global setting largefield is set to true then the smallest primitive

element is computed and its value is stored in the global variable pe;
– if the global setting largefield was set to false a complete table of the

logarithms and of the powers is computed.

The elements of the field will be represented as polynomials in x.
The command gf info() prints information about the current field.

(%i1) load(gf);
(%o1) .../share/contrib/gf/gf.mac
(%i2) gf_set(2,x^4+x+1);
(%o2) true

3.3 Basic Operations

Addition, subtraction, inversion, multiplication and division are provided by the
following commands: gf add, gf sub, gf inv, gf mul, gf div.

(%i3) gf_mul(x^3+x^2+1,x^3+x+1);
(%o3) x2 + x

3.4 Primitive Elements, Powers and Logarithms

The command gf log(a) computes the discrete logarithm of the a with respect
to the primitive element. The command gf log(f,g) finds the discrete logarithm
of f with respect to g by using the Pohlig-Hellman algorithm if largefield is
set to true or by using a precomputed table.

(%i4) a:x^3+x^2+1;
(%o4) x3 + x2 + 1
(%i5) gf_log(a);
(%o5) 13

The command gf findprim() computes the smallest primitive element.
(%i6) gf_findprim();
(%o6) x

The command gf exp(a,n) computes the n-th power of a:
(%i7) ev(a=gf_exp(x,13));
(%o7) true

72 F. Caruso, J. D’Aurizio, and A. McAndrew

3.5 Modular Roots
In order to use the functions related to modular roots in Maxima 5.14, the
subpackage gf roots must be loaded with the load(gf roots) command. With
Maxima 5.15 both parts of the package are loaded automatically.

The functions msqrt and mcbrt, as well as their improved versions, gf sqrt
and gf cbrt, provide implementations of the modular square and cubic roots:

(%i1) load(gf_roots);
(%o1) .../share/contrib/gf/gf roots.mac
(%i2) msqrt(100,41);
(%o2) [31, 10]
(%i3) mcbrt(343,1789);
(%o3) [1064, 718, 7]
(%i4) gf_sqrt(441,11592740641);
(%o4) [21, 11592740620]
(%i5) gf_cbrt(1331,11592740641);
(%o5) [9979650219, 11, 1613090411]

4 Applications

The finite fields implementation is robust and efficient enough to deal with the
standard applications. For example the Advanced Encryption Standard Rijn-
dael [6] is based on algebra over the finite field

F2[x]/(x8 + x4 + x3 + x + 1).

This field is small enough for the largefield flag to be set to false, so that
a tables of powers and logarithms are computed as the field is defined. The
“MixColumn” layer of the cryptosystem can be implemented as a matrix product⎡⎢⎢⎣

d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤⎥⎥⎦
⎡⎢⎢⎣

c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,2 c1,3

c2,0 c2,1 c2,2 c2,3

c3,0 c3,1 c3,2 c3,3

⎤⎥⎥⎦
where ci,j are the results of the previous layer. Each of ci,j and di,j are bytes
whose bits may be interpreted as the coefficients of a polynomial element in the
field. The constant matrix in the product above may be represented in the field
as ⎡⎢⎢⎣

x x + 1 1 1
1 x x + 1 1
1 1 x x + 1

x + 1 1 1 x

⎤⎥⎥⎦

Efficient Finite Fields in the Maxima Computer Algebra System 73

The inverse can be very quickly determined using the gf_matinv() command
in the library, and is found to be⎡⎢⎢⎣

x3 + x2 + x x3 + x + 1 x3 + x2 + 1 x3 + 1
x3 + 1 x3 + x2 + x x3 + x + 1 x3 + x2 + 1

x3 + x2 + 1 x3 + 1 x3 + x2 + x x3 + x + 1
x3 + x + 1 x3 + x2 + 1 x3 + 1 x3 + x2 + x

⎤⎥⎥⎦ ≡
⎡⎢⎢⎣

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

⎤⎥⎥⎦
We can also use the library to investigate the workings of the “ByteSub” layer,
which is usually implemented as a lookup table, but which is based on inversion
in the field coupled with a linear operation.

For an application of our package to the study of the Chor-Rivest [3] cryp-
tosystem we refer to the on line manual [2].

Since Maxima has a more user-friendly environment and the library uses poly-
nomials in x as input and output, it is very suitable for teaching. Axiom, in
comparison, uses elements of the form %A, %B and so on for the output of its field
operations. Although this does have the mathematical advantage of allowing
different fields to be implemented simultaneously, it is confusing for students.
When the third author experimented with teaching a cryptography course using
both Axiom and Maxima [12], students found the implementation of Maxima’s
finite fields easy to use, and intuitive.

5 Performance and Comparisons

When we started working on this library no routines for finite fields were available
in Maxima as it still is the case for other free and open source systems, such
as GP/Pari [7] for which only recently a patch is being implemented.4 Axiom
provides a “domain”, i.e. a type for finite fields with efficient implementations.
As well as Axiom, we compare our results with two commercial packages which
provide an implementation of finite fields: Maple [8], and MuPAD [5].

The field F2[x]/(x20 + x3 + x2 + x + 1).

Problem Maxima Axiom Maple MuPAD

Log of x10 + 1 to the base x2 + x 0.15 ≈ 0 ≈ 0 0.02
Min. polynomial of x10 + 1 0.30 ≈ 0 — —

The field F2[x]/(x48 + x26 + x13 + 1).

Problem Maxima Axiom Maple MuPAD

Compute (x10 + 1)3
30

0.15 0.02 0.16 0.04
Random element to the power of 330 0.35 0.03 ≈ 0 0.044

4 Bill Allombert has been working on a patch that adds support for finite fields into
GP/Pari. The patch is available at
http://pari.math.u-bordeaux.fr/archives/pari-dev-0703/msg00011.html

74 F. Caruso, J. D’Aurizio, and A. McAndrew

The field F7[x]/(x10 + 5x2 + x + 5).

Problem Maxima Axiom Maple MuPAD

Compute (x8 + 5x2 + 3x + 1)5
12

0.05 0.01 ≈ 0 0.02
Random element to the power of 512 0.05 0.01 ≈ 0 0.02
Min. polynomial of x9 + 3x6 + x5 + 2x2 + 6 0.16 0.01 — —
Log of x9 + 3x6 + x5 + 2x2 + 6 in base x 1.15 0.16 — 25.577

Primitive Element

Field Result Maxima Axiom Ratio Maple MuPAD

F123127[x]/(x5 + 2 x + 1) x + 4 0.30 0.18 166.6 0.012 0.112
F8796519617 [x]/(x8+3 x6+x+1) x + 9 1.39 5.76 24.1 0.344 2.404
F7[x]/(x10 + 5 x2 + x + 5) x 0.15 0.04 375 ≈ 0 0.052
F32717[x]/(x11 +x5 +x2 +x+1) x + 2 1.69 5.63 30 0.848 2.376
F211[x]/(x17 + 2 x2 + 1) x + 6 0.67 2.12 31.6 0.008 0.908
F2[x]/(x20 + x3 + x2 + x + 1) x2 + x 0.40 0.08 500 ≈ 0 0.032
F197[x]/(x24 − x8 + 2) x + 19 1.63 38.73 4.2 0.104 7.897
F5[x]/(x61 + x15 + 1) x + 4 1.02 33.98 3 12.448 4.416
F7[x]/(x61 + x4 + 1) x + 3 0.69 35.53 1.94 1.885 7.976
F5[x]/(x84 + x41 + x2 + 1) x2 + 1 6.15 323.13 1.9 0.524 38.175
F3[x]/(x91 + x35 + x + 1) x 0.95 39.03 2.43 3.180 5.2
F2[x]/(x102 + x29 + 1) x + 1 0.84 34.55 2.43 0.028 4.3

Note: The timings are in seconds. The ratio is the percentage ratio between the Axiom

and Maxima timings. The symbol – means that either the system cannot perform the

operation or no command for that operation is available in that system.

We focused our efforts on the efficient computation of primitive elements and
modular k-th roots for finite fields. The computation of the primitive element in
Maxima5 is generally faster than in Axiom [10] or MuPAD6 except for some finite
fields with very low exponent. We may also note that Maple’s timing vary widely,
with some of our timings showing a greater speed for Maxima. Considering that
Maxima is using interpreted code, while other CAS are generally using compiled
code, these figures indicate very good results for our implementation.

6 Future Plans

As already mentioned the upcoming Maxima version 5.15 will include an updated
library, providing routines for modular k-th root computation as described in
Section 2.6, 2.7 and 2.8.
5 We used Maxima 5.12 with GCL and the latest version of our package, which we

tested against Axiom 3.9. The hardware used was an Intel Core 2 E6570 Duo at
2.66Ghz, on x86 64 GNU Linux 2.6.24.

6 The timings for Maple and MuPAD were done using Maple 10 and MuPAD Pro 3.2
under Linux 2.6.13 on a Pentium IV at 2.66Ghz which is roughly 50% slower than
the hardware used for Maxima and Axiom.

Efficient Finite Fields in the Maxima Computer Algebra System 75

As a next step we plan to add new features and further optimizations to our
routines. In particular our interest will be focused on

– several optimizations for gf log and gf inv (using the Itoh-Tsujii algo-
rithm [9]);

– faster generation and better handling of normal bases (especially for F2n);
– efficient irreducibility tests over Fp for polynomials of low degree;
– functions dealing with binary quadratic forms of a given discriminant over Fp;
– cubic and quartic reciprocity symbols (in order to decrease the complexity

of tests like a
p−1
3 ≡ 1 (mod p)

from O(log(p)) to O(log(a)) multiplications in Fp);
– implementing optimized routines for F2n ;
– implementing algorithms [20] for the computation of irreducible polynomials

over finite fields;
– porting our code to the Axiom system.

Acknowledgments

We would like to thank Carlo Traverso, Dario Bini and Marco Bodrato for their
suggestions and encouragement.

References

1. Brickell, E., Gordon, D., McCurley, K., Wilson, D.: Fast exponentiation with pre-
computation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp.
200–207. Springer, Heidelberg (1993)

2. Caruso, F., D’Aurizio, J., Mc Andrew, A.: On line manual on Finite Fields in
Maxima (2007), http://www.dm.unipi.it/∼caruso

3. Chor, B., Rivest, R.L.: A knapsack-type public key cryptosystem based on arith-
metic in finite fields. IEEE Trans. Inform. Theory 34(5, part 1) 901–909 (1988)

4. Cipolla, M.: Sulla risoluzione apiristica delle congruenze binomie secondo un mod-
ulo primo. Mathematische Annalen 63, 54–61 (1907)

5. Creutzig, C., Oevel, W.: MuPAD Tutorial, 2nd edn. Springer, Heidelberg (2004)
6. Daemen, J., Rijmen, V.: The design of Rijndael. In: Information Security and Cryp-

tography. AES—the advanced encryption standard. Springer, Heidelberg (2002)

7. Pari Group. GP/Pari on line documentation (2003),
http://pari.math.u-bordeaux.fr/

8. Heck, A.: Introduction to Maple, 3rd edn. Springer, Heidelberg (2003)
9. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in F2m

using normal bases. Inform. and Comput. 78(3), 171–177 (1988)
10. Jenks, R.D., Sutor, R.S.: AXIOM. The scientific computation system, With a fore-

word by David V. Chudnovsky and Gregory V. Chudnovsky. Numerical Algorithms
Group Ltd., Oxford (1992)

11. Lehmer, D.H.: Computer technology applied to the theory of numbers. In: Studies
in Number Theory, pp. 117–151; Math. Assoc. Amer. (distributed by Prentice-Hall,
Englewood Cliffs, N.J.) (1969)

76 F. Caruso, J. D’Aurizio, and A. McAndrew

12. McAndrew, A.: Teaching cryptography with open-source software. In: SIGCSE
2008: Proceedings of the 39th SIGCSE technical symposium on Computer science
education, pp. 325–329. ACM, New York (2008)

13. McEliece, R.J.: Finite Fields for Computer Scientists and Engineers. Kluwer Aca-
demic Publishers, Boston (1987)

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press Series on Discrete Mathematics and its Applications. CRC Press,
Boca Raton (1997) (With a foreword by Ronald L. Rivest)

15. Müller, S.: On the Computation of Square Roots in Finite Fields. Designs, Codes
and Cryptography 31(3), 301–312 (2004)

16. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Information Theory IT-
24(1), 106–110 (1978)

17. Rowney, K.T., Silverman, R.D.: Finite field manipulations in Macsyma. SIGSAM
Bull. 23(1), 39–48 (1989)

18. Schelter, W.F., The Maxima Group: Maxima on line documentation (2001),
http://maxima.sourceforge.net

19. Shanks, D.: Five Number-Theoretic Algorithms. In: Proceedings of the Second
Manitoba Conference on Numerical Mathematics, pp. 51–70 (1972)

20. Shoup, V.: New Algorithms for Finding Irredicible Polynomials Over Finite Fields.
Mathematics of Computation 54(189), 435–447 (1990)

21. Shoup, V.: Searching for Primitive Roots in Finite Fields. Math. Comp. 58(197),
369–380 (1992)

22. Stickelberger, L.: Über eine neue Eigenschaft der Diskriminanten algebrais-
cher Zahlkörper. In: Verhandlungen des ersten Internationalen Mathematiker-
Kongresses, pp. 182–193 (1897)

23. Tonelli, A.: Bemerkung über die Auflösung quadratischer Congruenzen. Göttingen
Nachrichten, 344–346 (1891)

24. Wang, Y.: On the least primitive root of a prime. Sci. Sinica 10, 1–14 (1961)
25. Yan, S.Y.: Number Theory for Computing, 2nd edn. Springer, New York (2002)

Modular Reduction in GF(2n) without

Pre-computational Phase

M. Knežević1, K. Sakiyama1,2, J. Fan1, and I. Verbauwhede1

1Katholieke Universiteit Leuven
Department Electrical Engineering - ESAT/SCD-COSIC and IBBT

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
{mknezevi,ksakiyam,jfan,iverbauw}@esat.kuleuven.be

2University of Electro-Communications
Dept. of Information and Communication Eng.

1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
saki@ice.uec.ac.jp

Abstract. In this study we show how modular multiplication with Bar-
rett and Montgomery reductions over certain finite fields of characteris-
tic 2 can be implemented efficiently without using a pre-computational
phase. We extend the set of moduli that is recommended by Standards
for Efficient Cryptography (SEC) by defining two distinct sets for which
either Barrett or Montgomery reduction is applicable. As the proposed
algorithm is very suitable for a fast modular multiplication, we propose
an architecture for the fast modular multiplier that can efficiently be
used without pre-computing the inverse of the modulus.

Keywords: Modular multiplication, Barrett reduction, Montgomery re-
duction, elliptic curve cryptography, public-key cryptography.

1 Introduction

Modular multiplication is at the heart of many Public-Key Cryptosystems (PKC),
e.g. RSA [10], Diffie-Hellman key agreement [4], ElGamal scheme [5,6] and Ellip-
tic Curve Cryptography (ECC) [7,8]. Due to the very long numbers used in these
crypto primitives efficient hardware and software implementation of modular
multiplication has always been a challenge. Algorithms that are most commonly
used to avoid computationally intensive multi-precision divisions are Barrett re-
duction [1] and Montgomery reduction [9]. Both algorithms have one common
property, namely a pre-computational step, where the inverse of the modulus is cal-
culated and stored together with the value of the modulus. As the modular inverse
operation is computationally more expensive than the modular multiplication it-
self one usually fixes the value of modulus and uses the pre-computed value of the
inverse. This reduces flexibility as well as the performance of the implementation
increasing the area needed for the storage of the modulus inverse.

In [11] the authors outline a so called unbalanced exponent modular reduction
for special type of moduli that can efficiently be used as a replacement for existing

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 77–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 M. Knežević et al.

Barrett and Montgomery algorithms. The original idea comes from Standards
for Efficient Cryptography (SEC) [12] and it recommends the use of moduli that
are of type M(x) = xn + T (x) where the degree of T (x) is far smaller than
n. This is very suitable for software implementations and makes reduction very
efficient due to the special type of modulus. However, hardware implementation
still requires more effort, especially when one needs to support more than one
modulus.

In this paper we show how Barrett and Montgomery reduction algorithms
over binary fields can be performed without using a pre-computational step. We
extend the set of moduli that is recommended by SEC by defining two distinct
sets for which either Barrett or Montgomery reduction is applicable. Due to the
similarity between the Barrett and Montgomery algorithms, we propose a hard-
ware architecture for the fast modular multiplier that can efficiently be used for
the two defined sets of moduli. The multiplier performs modular multiplications
within a single clock cycle.

The remainder of this paper is structured as follows. Section 2 describes the
Barrett and Montgomery modular multiplication algorithms as the two most
commonly used reduction methods. In Sect. 3, we show how pre-computation can
be omitted in Barrett and Montgomery algorithms over binary fields. Hardware
implementation and comparison with related work is given in Sect. 4. Section 5
concludes the paper and gives some guidelines for the future work.

2 Related Work

2.1 Modular Multiplication with Barrett Reduction

Barrett reduction algorithm was introduced by P. D. Barrett in 1986 [1]. This
algorithm computes r ≡ a mod m for an input a and a modulus m and is
given in Alg. 1. The algorithm uses μ, a pre-computed reciprocal of m, to avoid
computationally expensive divisions that are necessary to compute the quotient
q such that a = qm + r.

Modular multiplication of two n-bit inputs using Barrett reduction is done by
providing the result of n× n-bit multiplication (input a in Alg. 1).

2.2 Modular Multiplication with Montgomery Reduction

Montgomery algorithm is one of the most commonly used reduction algorithms.
In contrast to Barrett reduction it utilizes right to left divisions which make
implementation simpler, with no correction steps necessary. The result of re-
duction has a form aR−1 mod m, where R is a power of the base b. Similar to
Barrett reduction this algorithm uses a pre-computed value β ≡ −m−1 mod R.
Algorithm 2 shows Montgomery reduction in short.

Similar to Barrett reduction, modular multiplication of two n-bit inputs can
also be done based on Alg. 2.

Modular Reduction in GF(2n) without Pre-computational Phase 79

Algorithm 1. Barrett reduction for integers

Require: positive integers a = (a2n−1, ..., a0)b, m = (mn−1, mn−2..., m0)b and
μ = b2n div m, where mn−1 �= 0 and b > 3.

Ensure: r ≡ a mod m.
q1 ← a div bn−1, q2 ← μq1, q3 ← q2 div bn+1.
r1 ← a mod bn+1, r2 ← mq3 mod bn+1, r ← r1 − r2.
Final reduction and correction step:
if r ≤ 0 then

r ← r + bn+1.
end if
while r ≥ m do

r ← r − m.
end while
return r.

Algorithm 2. Montgomery reduction for integers
Require: positive integers a = (a2n−1, ..., a0)b, m = (mn−1..., m1, m0)b and

β ≡ −m−1 mod R, where R = bn and gcd(b, m) = 1.
Ensure: t ≡ aR−1 mod m.

s1 ← a mod R, s2 ← βs1 mod R, s3 ← ms2.
t ← (a + s3)/R.
Final reduction:
if t ≥ m then

t ← t − m.
end if
return t.

2.3 Shortcomings of the Existing Algorithms

Both described, Barrett and Montgomery algorithms have one property in com-
mon. In order to perform modular reduction, they need a pre-computed value of
the reciprocal/inverse of modulus. This reduces flexibility of the system forcing
us to use fixed modulus and its pre-computed reciprocal/inverse. From the im-
plementation point of view, this requires extra computational time and memory
space to store this pre-computed value.

In the next section we show how these shortcomings can be overcome using
the special set of moduli over GF(2n).

3 The Proposed Modular Reduction Method

Here, we first show how the original Barrett reduction can be adapted for mod-
ular multiplication over GF(2n). Second, we provide a special set of moduli for
which pre-computational step in Barrett algorithm can be omitted. Finally, we
show how Montgomery reduction, using a complementary set of moduli, can

80 M. Knežević et al.

also be performed without pre-computing the inverse. Since neither of them re-
quires a pre-computational step these algorithms are specially suitable for both
hardware and software implementations.

Before describing the actual algorithms, we need to give some mathematical
background of the finite fields arithmetic. Thus, in the next subsection we first
give two lemmata and one definition that are necessary for further explanation
of the algorithm.

3.1 Mathematical Background

Starting with the basic idea of the proposed Barrett algorithm over GF(2n) we
give Lemma 1 as follows:

Lemma 1. Let M(x) = xn +
l∑

i=0

mix
i and μ(x) = x2n div M(x) be polynomials

over GF(2), where l =
⌊n

2
⌋
. Then it holds:

μ(x) = M(x) . (1)

Proof. In order to prove that Eq. (1) holds we need to find polynomial B(x) of
degree n− 1 or less that satisfies the following equation:

x2n = M(x)2 + B(x) .

Indeed, if we write x2n as

x2n = M(x)2 + B(x)

= x2n +
l∑

i=0

mix
2i +

n−1∑
i=0

bix
i ,

we can choose coefficients bi, 0 ≤ i ≤ n− 1, such that b2j = mj and b2j+1 = 0,
0 ≤ j ≤ l. This concludes the proof. ��

Lemma 2. Let M(x) =
n∑

i=l

mix
i + 1 and β(x) ≡ −M(x)−1 mod xn be polyno-

mials over GF(2), where l =
⌈n

2
⌉
. Then it holds:

β(x) = M(x) . (2)

Proof. In order to prove Eq. (2) we need to show that

M(x)2 ≡ 1 mod xn .

Indeed, if we write M(x)2 as

M(x)2 = M(x)M(x)

=
n∑

i=l

mix
2i + 1 ,

Modular Reduction in GF(2n) without Pre-computational Phase 81

it becomes obvious that M(x)2 ≡ 1 mod xn, since l =
⌈n

2
⌉
. This concludes the

proof. ��
Definition 1. Let P (x) and Q(x) denote arbitrary polynomials of degree p and
q, respectively. We define Δ(n) = P (x)

Q(x) such that n = p− q and n ∈ ZZ. In other
words, with Δ(n) we denote an arbitrary element from the set of all rational
functions of degree n.

3.2 Barrett Reduction without Pre-computation

The Barrett modular reduction algorithm for integers is given in Sect. 2. In [3]
the author shows how the original Barrett reduction can be adapted for the
finite fields of characteristic q. Here, we outline the Barrett reduction over a
binary field and additionally, we propose a special set of moduli for which the
pre-computational step is not needed. First, we provide Alg. 3 and then we give
a proof.

Algorithm 3. Barrett reduction over GF(2n)

Require: polynomial-basis inputs A(x) =
2n

i=0

aix
i, M(x) = xn +

n−1

i=0

mix
i and

μ(x) = x2n div M(x), where ai, mi ∈ {0, 1}.
Ensure: R(x) ≡ A(x) mod M(x).

Q1(x) ← A(x) div xn, Q2(x) ← μ(x)Q1(x), Q3(x) ← Q2(x) div xn.
R1(x) ← A(x) mod xn, R2(x) ← M(x)Q3(x) mod xn, R(x) ← R1(x) + R2(x).

Proof. Using notation from Def. 1 and starting from the original Barrett reduc-
tion algorithm we can write

μ(x) = x2n div M(x)

=
x2n

M(x)
+ Δ(−1) .

Similarly, we can express Q1(x) as

Q1(x) = A(x) div xn

=
A(x)
xn

+ Δ(−1)

=
(

Q(x)M(x)
xn

+ Δ(−1)
)

+ Δ(−1)

=
Q(x)M(x)

xn
+ Δ(−1) ,

82 M. Knežević et al.

where Q(x) = A(x) div M(x). Using the previous equations, Q2(x) and Q3(x)
can be written as

Q2(x) = μ(x)Q1(x)

=
(

x2n

M(x)
+ Δ(−1)

)(
Q(x)M(x)

xn
+ Δ(−1)

)
= Q(x)xn +

x2n

M(x)
Δ(−1) +

Q(x)M(x)
xn

Δ(−1) + Δ(−1)Δ(−1)

= Q(x)xn + Δ(n− 1) + Δ(n− 1) + Δ(−2)
= Q(x)xn + Δ(n− 1) ,

Q3(x) = Q2(x) div xn

=
(
Q(x)xn + Δ(n− 1)

)
div xn

= Q(x) .

Finally, we can evaluate R(x) = A(x) mod M(x) as

R(x) ≡ A(x) mod xn + M(x)
(
A(x) div M(x)

)
mod xn

≡ A(x) mod xn + M(x)Q(x) mod xn

≡ A(x) mod xn + M(x)Q3(x) mod xn .

This concludes the proof. ��

Now, according to Lemma 1, we can define a set of moduli for which the Barrett
reduction described in Alg. 3 does not require a pre-computational step. This

set is of type M(x) = xn +
l∑

i=0

mix
i, where l =

⌊n

2
⌋

and the algorithm is shown

in Alg. 4. It is interesting to note here that, for this special case, the irreducible
polynomial can be chosen from the set that contains 2	n/2
 different polynomials.
As we already know, only irreducible polynomials can be used to construct the
field.

Algorithm 4. Barrett reduction over GF(2n) without pre-computation

Require: polynomial-basis inputs A(x) =
2n

i=0

aix
i, M(x) = xn +

l

i=0

mix
i, where

l =
n

2
and ai, mi ∈ {0, 1}.

Ensure: R(x) ≡ A(x) mod M(x).
Q1(x) ← A(x) div xn, Q2(x) ← M(x)Q1(x), Q3(x) ← Q2(x) div xn.
R1(x) ← A(x) mod xn, R2(x) ← M(x)Q3(x) mod xn, R(x) ← R1(x) + R2(x).

Modular Reduction in GF(2n) without Pre-computational Phase 83

3.3 Montgomery Reduction without Pre-computation

Since there is no correction step in the original Montgomery algorithm (see
Alg. 2), this method can be easily applied for the modular multiplication over
GF(2n) (see Alg. 5). This algorithm was proposed in [2]. Here we outline the
algorithm and then, to make the paper more consistent, we also give a proof.

Algorithm 5. Montgomery reduction over GF(2n)

Require: polynomial-basis inputs A(x) =
2n

i=0

aix
i, M(x) = xn +

n−1

i=1

mix
i + 1 and

β(x) ≡ −M−1(x) mod R(x), where R(x) = xn and ai, mi ∈ {0, 1}.
Ensure: T (x) ≡ A(x)R(x)−1 mod M(x).

S1(x) ← A(x) mod R(x), S2(x) ← β(x)S1(x) mod R(x), S3(x) ← M(x)S2(x).
T (x) ← A(x) + S3(x) /R(x).
return T (x).

Proof. Polynomial A(x) can be written as A(x) = A1(x)R(x) + A0(x), where
R(x) = xn. There exists polynomial S(x) of degree n− 1 such that

A0(x) + M(x)S(x) ≡ 0 mod R(x) ,

In other words, S(x) can be expressed as

S(x) ≡ −A0(x)M(x)−1 mod R(x) .

At the same time it holds

A(x) + M(x)S(x) ≡ A(x) mod M(x) ,

A(x) + M(x)S(x) ≡ 0 mod R(x) .

Finally, we have

T (x) ≡ (
A(x) + M(x)S(x)

)
/R(x)

≡ A(x)R(x)−1 mod M(x) .

Using notations from Alg. 5 it is obvious that:

β(x) = −M−1(x) mod R(x)
S1(x) = A0(x)
S2(x) = S(x)
S3(x) = M(x)S(x) .

This concludes the proof. ��

84 M. Knežević et al.

According to Lemma 2, we can easily find a set of moduli for which the pre-
computational step in Montgomery reduction can be omitted. Instead of pre-
computing and using β(x) we use the modulus itself. This algorithm is shown in

Alg.6. The proposed set is of type M(x) = xn +
n−1∑
i=l

mix
i + 1, where l =

⌈n

2
⌉
.

Similar to the set defined for Barrett reduction, this set also contains 2	n/2

different polynomials.

Algorithm 6. Montgomery reduction over GF(2n) without pre-computation

Require: polynomial-basis inputs A(x) =
2n

i=0

aix
i and M(x) = xn +

n−1

i=l

mix
i + 1

where l =
n

2
, R(x) = xn and ai, mi ∈ {0, 1}.

Ensure: T (x) ≡ A(x)R−1(x) mod M(x).
S1(x) ← A(x) mod R(x), S2(x) ← M(x)R1(x) mod R(x),
S3(x) ← M(x)S2(x).
T (x) ← A(x) + S3(x) div R(x).
return T (x).

4 Hardware Implementation of the Proposed Algorithm

To verify our algorithm in practice we synthesize the proposed solution for
GF(2192) using a 0.13μm CMOS standard cell library. Here, we aim only for
the fast version of the multiplier. Additionally, we synthesize standard Barrett
and Montgomery reduction algorithms and compare them with our results. To
make a fair comparison we use the same 192 × 192-bit multipliers in every im-
plementation.

An architecture for the straightforward implementation of the Barrett or Mont-
gomery modular multiplication algorithm over GF(2192) is shown in Fig. 1 (a). For
both algorithms we need five 192-bit registers, three 192×192-bit multipliers and
one 192-bit adder. Since in binary fields there is no carry propagation, addition is
equivalent to XOR operation.

A block diagram of the proposed solution is shown in Fig. 1 (b). Here we
can see that instead of using five we use only four 192-bit registers. Similarly to
Barrett and Montgomery architecture shown in Fig. 1 (a) we use three 192×192-
bit multipliers and one 192-bit adder. Additionally, we use four multiplexers that
are driven by the register ind. This 1-bit register indicates which of the two
proposed complementary set of moduli is used. Architecture of the selectors 1, 2
and 3 is given in Fig. 2. For ind = 0 our architecture executes Barrett modular
multiplication while for ind = 1 it performs Montgomery modular multiplication.

Synthesis results are given in Table 1. They include registers and combi-
national logic. For both Barrett and Montgomery algorithms, we assume that

Modular Reduction in GF(2n) without Pre-computational Phase 85

Fig. 1. Architecture of the modular multiplier over GF(2192). (a) using standard Bar-
rett or Montgomery reduction. (b) using proposed method.

MSB LSB MSB LSB
192 192 192192

384

192 192

ind

MSB LSB
192 192

384

MSB LSB
192 192

384

ind ind

192192

1 2 3

0 1 0 1 0 1 0 1

Fig. 2. Architecture of the three selectors in proposed modular multiplier

Table 1. Comparison of the hardware implementations for modular multiplication over
GF(2192)

Architecture Pre-computation needed Size [kgate] Latency [ns] Number of cycles

Barrett* Yes 405.61 6.12 1

Montgomery* Yes 405.61 6.12 1

Proposed No 406.32 6.69 1

*Area and latency for performing the pre-computational step is not included.

86 M. Knežević et al.

pre-computation is already performed and both values for μ(x) and β(x) (see
Fig. 1 (a)) are known. Skipping the pre-computation step is highly beneficial for
both area and computational cost and is the main advantage of our algorithm.

Observing the results from Table 1 we can conclude that our architecture has
almost identical size as the separate Barrett and Montgomery multipliers. This
gives a practical value to our theoretical work described above. One can always
use the proposed implementation with much more flexibility and choose different
moduli without pre-computational phase.

5 Conclusions and Future Work

In this paper we have defined two distinct sets of moduli for which the pre-
computational step in the modular multiplication algorithm can be excluded.

Sets are of type M(x) = xn +
l∑

i=0

mix
i, where l =

⌊n

2
⌋

and M(x) = xn +

n−1∑
i=l

mix
i + 1, where l =

⌈n

2
⌉
. Additionally, we have introduced a hardware

architecture for the fast modular multiplier over GF(2n) that uses proposed sets
of moduli without pre-computation. Architecture supports both, Barrett and
Montgomery modular reduction.

At the cost of more control logic, a similar multiplier that supports different
degrees of moduli can be introduced. This would further increase the flexibility
of the proposed fast modular multiplier.

As a part of our future research we would like to explore the impact of the
similar special sets of moduli on building a compact version of the modular
multiplier.

Acknowledgment

We would like to thank Dr. Frederik Vercauteren for answering patiently all our
questions and providing useful feedback and comments.

This work is funded partially by IBBT, Katholieke Universiteit Leuven
(OT/06/40) and FWO projects (G.0300.07 and G.0450.04). This work was sup-
ported in part by the IAP Programme P6/26 BCRYPT of the Belgian State
(Belgian Science Policy), by the EU IST FP6 projects (ECRYPT) and by the
IBBT-QoE project of the IBBT.

References

1. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

2. Koç, Ç.K., Acar, T.: Montgomery multiplication in GF(2k). Designs, Codes and
Cryptography 14, 57–69 (1998)

Modular Reduction in GF(2n) without Pre-computational Phase 87

3. Dhem, J.-F.: Efficient modular reduction algorithm in IFq[x] and its application to
left to right modular multiplication in IF2[x]. In: Proceedings of 5th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES). LNCS,
pp. 203–213. Springer, Heidelberg (2003)

4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1976)

5. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

6. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

7. Koblitz, N.: Elliptic curve cryptosystem. Math. Comp. 48, 203–209 (1987)
8. Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) Ad-

vances in Cryptology: Proceedings of CRYPTO 1985. LNCS, vol. 218, pp. 417–426.
Springer, Heidelberg (1986)

9. Montgomery, P.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

10. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

11. Shen, H., Jin, Y., You, R.: Unbalanced Exponent Modular Reduction over Binary
Field and Its Implementation. In: Proceedings of the First International Conference
on Innovative Computing, Information and Control, pp. 190–193 (2006)

12. Standards for Efficient Cryptography. Elliptic Curve Cryptography, Version 1.5,
draft (2005), http://www.secg.org

Subquadratic Space Complexity Multiplication

over Binary Fields with Dickson Polynomial
Representation

M. Anwar Hasan1 and Christophe Negre2

1 Department of Electrical and Computer Engineering, University of Waterloo,
Canada

2 Team DALI/ELIAUS, University of Perpignan, France

Abstract. We study Dickson bases for binary field representation. Such
a representation seems interesting when no optimal normal basis exists
for the field. We express the product of two elements as Toeplitz or
Hankel matrix vector product. This provides a parallel multiplier which
is subquadratic in space and logarithmic in time.

1 Introduction

Finite field arithmetic is extensively used in cryptography. For public key cryp-
tosystems, the size (i.e. the number of element) of the field may be quite large,
say 22048. Finite field multiplication over such a large field requires a consider-
able amount of resources (time or space). For binary extension fields, used in
many practical public key cryptosystems, field elements can be represented with
respect to a normal basis, where squaring operations are almost free of cost.
In order to reduce the cost of multiplication over the extension field, instead of
using an arbitrary normal basis, it is desirable to use an optimal normal basis.
The latter however does not exist for all extension fields, in which case one may
use Dickson bases [2,7] and develop an efficient field multiplier.

In this paper we consider subquadratic space complexity multipliers using the
Dickson basis. To this end, using low weight Dickson polynomials, we formulate
the problem of field multiplication as a product of a Toeplitz or Hankel ma-
trix and a vector, and apply subquadratic space complexity algorithm for the
product [4], which gives us a subquadratic space complexity field multiplier.

The article is organized as follows. In Section 2 we present some general results
on Dickson polynomials. In Section 3 we give the outline of the subquadratic mul-
tiplier of matrix vector product of [4]. Then in Section 4 we give a matrix vector
product approach in Dickson basis representation. We wind up with complexity
comparison and a brief conclusion.

2 Dickson Polynomials

Dickson polynomials over finite fields were introduced by L.E. Dickson in [2].
These polynomials have several applications and interesting properties, the main

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 88–102, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Subquadratic Space Complexity Multiplication over Binary Fields 89

one being a permutation property over finite fields. For a complete explanation
on this the reader may refer to [6]. Our interest here concerns the use of Dickson
polynomial for finite field representation for efficient binary field multiplication.
There are two kinds of Dickson polynomials, and there are several ways to define
and construct both of them. We give here the definition of [6] of the first kind
Dickson polynomials.

Definition 1 (Dickson Polynomial[6] page 9). Let R be a ring and a ∈ R.
The Dickson polynomial of the first kind Dn(X, a) is defined by

Dn(X, a) =
	n/2
∑
i=0

n

n− i

(
n− i

n

)
(−a)iXn−2i. (1)

For n = 0, we set D0(X, a) = 2 and for n = 1 we have D1(X, a) = X.

In [6] it has been shown that Dickson polynomials can be computed using the
following recursive relation⎧⎨⎩

D0(X, a) = 2,
D1(X, a) = X,
Dn(X, a) = XDn−1(X, a)− aDn−2.

(2)

Using these relations we obtain the Dickson polynomials Dn(X, 1) in F2[X]
for n ≤ 20 given in Table 1.

The following theorem will be extensively used for the construction of sub-
quadratic multipliers in the Dickson basis.

Table 1. Dickson polynomials

β1 X
β2 X2

β3 X3 + X
β4 X4

β5 X5 + X3 + X
β6 X6 + X2

β7 X7 + X5 + X
β8 X8

β9 X9 + X7 + X5 + X
β10 X10 + X6 + X2

β11 X11 + X9 + X5 + X3 + X
β12 X12 + X4

β13 X13 + X11 + X9 + X3 + X
β14 X14 + X10 + X2

β15 X15 + X13 + X9 + X
β16 X16

β17 X17 + X15 + X13 + X9 + X
β18 X18 + X14 + X10 + X2

90 M.A. Hasan and C. Negre

Theorem 1. We denote βi = Di(X, 1) the n-th Dickson polynomial in F2[X].
Then for all i, j ≥ 0 the following equation holds

βiβj = βi+j + β|i−j|. (3)

Proof (Proof). This theorem is a consequence of equation (2).
We will show it by induction on i and j. Using Table 1 We can easily check

that equation (3) holds for i, j ≤ 1. We suppose that the equation is true for all
i, j ≤ n and we prove that the equation is true for i, j ≤ n + 1. We first prove it
for i = n + 1 and j ≤ n. We have

βn+1βj = (Xβn + βn−1)βj

= Xβnβj + βn−1βj = X(βn+j + β|n−j|) + (βn−1+j + β|n−1−j|),

by induction hypothesis. Now we have

βn+1βj = (Xβn+j + βn+j−1) + (Xβ|n−j| + β|n−1−j|)
= βn+1+j + β|n+1−j|.

For the other case i = n + 1 and j = n + 1, the product βn+1βn+1 is obtained
using similar tricks.

Polynomial and finite field representation using Dickson polynomials.
A direct consequence of Definition 1 is that each βi for i ≥ 1 has degree i (in
equation 1 look at the term corresponding to i = 0). As a result each polynomial
A =

∑n
i=0 AiX

i ∈ F2[X] can be expressed as

A = a0 +
n∑

i=1

aiβi.

Such expression can be obtained using Algorithm 1.

Algorithm 1. Conversion of field element representation
Require: A polynomial A(X) ∈ F2[X] of degree n.

R ← A
for i = n to 1 do

if deg R = i then
ai ← 1
R ← R + βi

else
ai ← 0

end if
end for
a0 ← R

Ensure: Return (a0, . . . , an)

Subquadratic Space Complexity Multiplication over Binary Fields 91

For example for A = 1 + X2 + X5 the execution of the previous algorithm
gives

R← 1 + X2 + X5

begin for
i = 5 R← R + β5 = 1 + X + X2 + X3, a5 ← 1
i = 4 a4 ← 0
i = 3 R← R + β3 = 1 + X2, a3 ← 1
i = 2 R← R + β2 = 1, a2 ← 1
i = 1 a1 ← 0
end for

a0 ← 1
A = 1 + β2 + β3 + β5

Since each polynomial can be written in term of Dickson polynomials, we can
use Dickson polynomials for basis representation of binary fields.

Remark 1. Algorithm 1 is only a simple version of the conversion process from
standard polynomial to Dickson representation. This conversion can be expressed
through an n×n matrix vector product, and can be implemented with a parallel
circuit with at most n2 AND gates and n(n−1) XOR gates with logarithmic time
delay. We expect that some Toeplitz structure could appear in the conversion
matrix, and the corresponding complexity would be subquadratic.

Theorem 2. Let P be an irreducible polynomial of degree n in F2[X]. The sys-
tem B = {β1, . . . , βn} forms a basis of F2n = F2[X]/(P) over F2.

Proof (Proof). To show that B is a basis we have to show that each element
A ∈ F2n can be expressed as

A =
n∑

i=1

aiβi with ai ∈ {0, 1},

and this expression is unique.
Let us first show that for each A ∈ F2n an expression in B exists. The poly-

nomial P is an irreducible polynomial in F2[X] and using Algorithm 1 it can be
expressed as

P = 1 +
n−1∑
i=1

piβi + βn.

Let A ∈ F[X]/(P) which is a polynomial of degree less than n and can also be
written as A = a0 +

∑n−1
i=1 aiβi with Algorithm 1. To get required expression

of A in B we need to express the coefficient a0 in B. To do this, we use the
expression of P in B. Since 1 =

∑n−1
i=1 piβi + βn mod P we can replace a0 by∑n−1

i=1 a0piβi + a0βn. We finally obtain

A =
n−1∑
i=1

(ai + a0pi)βi + a0βn mod P.

92 M.A. Hasan and C. Negre

Now we show that such expression is unique. If we have a second different
expression A =

∑n
i=1 a′

iβi, then by adding the two we get

n∑
i=1

(ai + a′
i)βi = 0. (4)

Let d be the maximal subscript such that ad �= a′
d. We rewrite βd = Xd + β′

d

where deg β′
d < d and then using (4) we obtain

d−1∑
i=1

(ai + a′
i)βi + (ad + a′

d)β
′
d + (ad + a′

d)X
d = 0.

Now deg(
∑d−1

i=1 (ai + a′
i)βi + (ad + a′

d)β
′
d) ≤ d− 1, and thus we must have (ad +

a′
d)X

d = 0, this contradicts the fact that ad �= a′
d.

3 Asymptotic Complexities of Toeplitz Matrix Vector
Product

In this section we recall some basics matrix-vector multiplication and their cor-
responding space and time complexities [4]. A Toeplitz matrix is defined as

Definition 2. An n × n Toeplitz matrix is a matrix [ti,j]0≤i,j≤n−1 such that
ti,j = ti−1,j−1 for 1 ≤ i, j.

If 2|n we can use a two way approach presented in Table 2, to compute a matrix
vector product T · V where T is an n× n Toeplitz matrix. If 3|n we can use the
three way approach which is also presented in Table 2.

If n is a power of 2 or a power of 3 the formulas of Table 2 can be used
recursively to perform T · V . Using these recursive processes through parallel
computation, the resulting multipliers [4] have the complexity given in Table 3.

The above subquadratic approach can also be used when H is an Hankel
matrix. We recall the definition of an Hankel matrix.

Definition 3 (Hankel matrix). Let H = [hi,j]0≤i,j≤n−1 be an n × n matrix.
We say that H is Hankel if

hi,j = hi−1,j+1 for 1 ≤ i and j < n− 1 (5)

Moreover we say that H is an essentially Hankel matrix, if H satisfies (5)
unless for i = n− 1 and for 0 ≤ j ≤ n− 1 where hn−1,j = 0.

Let H be an Hankel matrix. The matrix H ′ with the same rows as H in the
reverse order

H ′ = [hn−1−i,j]0≤i,j≤n−1

is a Toeplitz matrix. Consequently to perform W = H · V , we compute W ′ =
H ′ · V using the subquadratic of Table 3 method and then reverse the order of
the coefficients of W ′ to get W .

Subquadratic Space Complexity Multiplication over Binary Fields 93

Table 2. Subquadratic Toeplitz matrix vector product

Matrix decomposition

Two way Three way

T =
T1 T0

T2 T1

V0

V1
T =

T2 T1 T0

T3 T2 T1

T4 T3 T2

V0

V1

V2

Recursive formulas

T · V =
P0 + P2

P1 + P2
T · V =

P0 + P3 + P4

P1 + P3 + P5

P2 + P4 + P5

where where
P0 = (T0 + T1)V1,
P1 = (T1 + T2)V0,
P2 = T1(V0 + V1),

P0 = (T0 + T1 + T2)V2,
P1 = (T0 + T1 + T3)V1,
P2 = (T2 + T3 + T4)V0,
P3 = T1(V1 + V2,)
P4 = T2(V0 + V2),
P5 = T3(V0 + V1),

Table 3. Asymptotic complexity

Two-way split method Three-way split method

AND nlog2(3) nlog3(6)

XOR 5.5nlog2(3) − 6n + 0.5 24
5

nlog3(6) − 5n + 1
5

Delay TA + 2 log2(n)TX TA + 3 log3(n)TX

4 Field Multiplication Using Low Weight Dickson
Polynomials

In this section we consider multiplication of two elements of the binary field
F2n = F2[X]/(P) where the polynomial P is a low weight Dickson polynomial. In
particular we consider two and three-term Dickson polynomials P , i.e., Dickson
binomials and trinomials. Like low weight conventional polynomials the use of
low weight Dickson polynomials is expected to yield lower space complexity
multipliers.

4.1 Irreducible Dickson Binomials

In this subsection we will focus on finite fields F2n = F2[X]/(P) where P is a
two terms irreducible polynomial of the form P = βn + 1 where βn is the n-th
Dickson polynomial. As shown in Appendix A, for cryptographic size there is no
βn +1 irreducible. But some of them admit a big irreducible factor P which can
be use to define the field F2n .

94 M.A. Hasan and C. Negre

The elements of F2n are expressed in the Dickson basis B = {β1, . . . , βn}.The
following theorem shows that the product of two elements A and B in F2n can
be computed as a matrix-vector product MA ·B where MA is a sum of a Toeplitz
matrix and an essentially Hankel matrix.

Theorem 3. Let n be an integer such that βn + 1 is irreducible and let F2n =
F2[X]/(βn + 1). Let A =

∑n
i=1 aiβi and B =

∑n
i=1 biβi be two elements of F2n

expressed in B. The coefficients in B of the product A×B can be computed as⎡⎢⎢⎢⎢⎢⎣
an an−1 + a1 · · · a2 + an−2 a1 + an−1

a1 an · · · a3 + an−3 a2 + an−2

...
...

an−2 · · · · · · an an−1 + a1

an−1 · · · · · · a1 an

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎣ b1

...
bn

⎤⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣
a2 a3 · · · an−1 0 an−1

a3 a4 · · · 0 an−1 an−2

...
...

0 an−1 a2 a1

0 0 0

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎣ b1

...
bn

⎤⎥⎦ .

Proof (Proof). If we multiply the two elements A and B we get the following:

AB =

(
n∑

i=1

aiβi

)
×

(
n∑

i=1

biβi

)
=

n∑
i,j=1

aibiβiβj . (6)

Then from Theorem 1 we have βiβj = βi+j + β|i−j|, we can rewrite (6) as

AB =

⎛⎝ n∑
i,j=1

aibjβi+j

⎞⎠
︸ ︷︷ ︸

S1

+

⎛⎝ n∑
i,j=1

aibjβ|i−j|

⎞⎠
︸ ︷︷ ︸

S2

Now we express this former expression of AB as a sum of Toeplitz or Hankel
matrix vector product.

Let us begin with S1. We remark that S1 has a similar expression as product
of two polynomials of the same degree. In other words, S1 can be computed as
ZA · B where

ZA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
a1 0 · · · 0 0
...

...
an−1 · · · · · · a1 0
an · · · · · · a2 a1

0 an · · · a3 a1

...
...

0 0 · · · 0 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← β1

← β2

...
← βn

← βn+1

← βn+2

...
← β2n

Subquadratic Space Complexity Multiplication over Binary Fields 95

We reduce the matrix ZA modulo P = βn + 1 to get non-zero coefficients only
on rows corresponding to β1, . . . , βn. We use the fact that βn+i for i ≥ 0 satisfies

βn+i = βiβn + βn−i = βi + βn−i.

This equation is a simple consequence of equation (3) and that βn = 1 mod P .
This implies that the rows corresponding to βn+i are reduced into two rows one
corresponding to βi and the other to βn−i. After performing this reduction and
removing zero rows we get

S1 = ZA ·B =

⎡⎢⎢⎢⎣
an an−1 · · · a2 a1

a1 an · · · a3 a2

...
...

an−1 · · · · · · a1 an

⎤⎥⎥⎥⎦
⎡⎢⎣ b1

...
bn

⎤⎥⎦
︸ ︷︷ ︸

S1,1

+

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · an an−1

...
...

0 an · · · a3 a1

an an−1 · · · a2 a1

0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣ b1

...
bn

⎤⎥⎦
︸ ︷︷ ︸

S1,2

Finally, we get an expression of S1 as matrix vector product where the matrix
is a sum of a Toeplitz and an essentially Hankel matrix.

Now we do the same for S2. We split S2 into two sums

S2 =
(∑n

i,j=1 aibjβ|i−j|
)

=

⎛⎝ n∑
k=1

n−k∑
j=1

aj+kbjβk

⎞⎠
︸ ︷︷ ︸

S2,1

+

⎛⎝ n∑
k=1

n∑
j=k

aj−kbjβk

⎞⎠
︸ ︷︷ ︸

S2,2

. (7)

We express S2,1 and S2,2 as matrix vector products

S2,1 =

⎡⎢⎢⎢⎢⎢⎣
a2 a3 · · · an−1 an 0
a3 a4 · · · an 0 0
...

...
an 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎣ b1

...
bn

⎤⎥⎦ , (8)

S2,2 =

⎡⎢⎢⎢⎢⎢⎣
0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

0 0 a1

0 0

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎣ b1

...
bn

⎤⎥⎦ . (9)

96 M.A. Hasan and C. Negre

So now we have each of S1 and S2 in the required form. We can add S1,1 to
S2,2 and S1,2 to S2,1 to get the following expression of S1 + S2 = A×B.

A×B = (S1,1 + S2,2) + (S1,2 + S2,1)

=

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
an an−1 + a1 · · · a2 + an−2 a1 + an−1

a1 an · · · a3 + an−3 a2 + an−2

...
...

an−2 · · · · · · an an−1 + a1

an−1 · · · · · · a1 an

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣
a2 a3 · · · an−1 0 an−1

a3 a4 · · · 0 an−1 an−2

...
...

0 an−1 a2 a1

0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ ·
⎡⎢⎣ b1

...
bn

⎤⎥⎦

This ends the proof.

Example 1. Let us consider the field F29 . It is defined as F29 = F2[X]/(β9 + 1).
The Dickson basis of F29 is B = {β1, . . . , β9}. The multiplication of two elements
A and B can be computed as a matrix vector product. As stated in Theorem 3
the matrix can be decomposed as the sum of a Toeplitz TA matrix and an
essentially Hankel matrix HA. The Toeplitz matrix TA is

TA =

a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4 a6 + a3 a2 + a7 a1 + a8

a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4 a6 + a3 a2 + a7

a2 a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4 a6 + a3

a3 a2 a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4

a4 a3 a2 a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5

a5 a4 a3 a2 a1 a9 a8 + a1 a7 + a2 a6 + a3

a6 a5 a4 a3 a2 a1 a9 a8 + a1 a7 + a2

a7 a6 a5 a4 a3 a2 a1 a9 a8 + a1

a8 a7 a6 a5 a4 a3 a2 a1 a9

and the essentially Hankel matrix HA is

HA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2 a3 a4 a5 a6 a7 a8 0 a8

a3 a4 a5 a6 a7 a8 0 a8 a7

a4 a5 a6 a7 a8 0 a8 a7 a6

a5 a6 a7 a8 0 a8 a7 a6 a5

a6 a7 a8 0 a8 a7 a6 a5 a4

a7 a8 0 a8 a7 a6 a5 a4 a3

a8 0 a8 a7 a6 a5 a4 a3 a2

0 a8 a7 a6 a5 a4 a3 a2 a1

0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Subquadratic Space Complexity Multiplication over Binary Fields 97

4.2 Dickson Trinomials

Now we assume that the field F2n is defined by a three-term irreducible Dickson
trinomial P

P = 1 + βk + βn, with k ≤ n/2.

In Appendix A we give a list of irreducible trinomials with degree between 163
and 300.

The elements in F2n = F2[X]/(P) are expressed in the Dickson basis B =
{β1, . . . , βn}. Our aim is to express the product of two elements A, and B of F2n

as Toeplitz or Hankel matrix vector product. We first have

C = AB =

⎛⎝ n∑
i,j=1

aibjβi+j

⎞⎠
︸ ︷︷ ︸

S1

+

⎛⎝ n∑
i,j=1

aibjβ|i−j|

⎞⎠
︸ ︷︷ ︸

S2

Similar to the previous subsection, here we express S1 and S2 as matrix vector
product separately. Specifically

1. The sum S1 is expressed as ZA · B where ZA is

ZA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
a1 0 · · · 0 0
...

...
an−1 · · · · · · a1 0
an · · · · · · a2 a1

0 an · · · a3 a1

...
...

0 0 · · · 0 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← β1

← β2

...
← βn

← βn+1

← βn+2

...
← β2n

2. For S2 we get the same expression as (7)

S2 =

⎛⎝ n∑
k=1

n−k∑
j=1

aj+kbjβk

⎞⎠
︸ ︷︷ ︸

S2,1

+

⎛⎝ n∑
k=1

n∑
j=k

aj−kbjβk

⎞⎠
︸ ︷︷ ︸

S2,2

. (10)

where

S2 =

a2 a3 · · · an−1 an 0
a3 a4 · · · an 0 0
...

...
an 0 0
0 0 0

· +

0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

0 0 a1

0 0
... 0
0 0

·
b1

...
bn

(11)

98 M.A. Hasan and C. Negre

Now we replace S1 and S2 by their corresponding expressions given above in
AB = S1 + S2. We get

AB =

0 0 · · · 0 0
a1 0 · · · 0 0
...

...
an−1 · · · · · · a1 0
an · · · · · · a2 a1

0 an · · · a3 a1

...
...

0 0 · · · 0 an

+

0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

0 0
0 0
0 0
...

...
0 0

·
b1

...
bn

+

a2 a3 · · · an−1 an 0
a3 a4 · · · an 0 0
...

...
an 0 0
0 0 0
...
0 0 0

·
b1

...
bn

(12)

In (12) the addition of two 2n×n Toeplitz matrices results in one single 2n×n
Toeplitz matrix. The latter can be horizontally split in the middle to obtain
two n × n Toeplitz matrices, say Tup and Tdown, which can be then multiplied
separately with vector (b1, . . . , bn) with a total cost of two n×n Toeplitz matrix
vector products.

The other 2n × n Hankel matrix in (12) has all zero in the lower n rows,
contributing nothing to the cost of the matrix vector multiplication. Thus, the
total computational cost of (12) is no more than three n× n Toeplitz or Hankel
matrix-vector products.

Remark 2. Among the above three matrices, two of them are triangular. One
can attempt to reduce the cost of matrix vector product by using this triangular
structure. For example, in the two way split strategy, we can perform T · V as

T · V =
[
T0 T1

0 T0

]
·
[

V0

V1

]
=

[
T0V0 + T1V1

T0V1

]
Such an approach seems to be interesting since the recursive formula needs less

computation than in Table 2. However our analysis shows that asymptotically
the gain is negligible and the resulting dominant term remains the same as in
Table 3.

The reduction
The resulting expression of C in (12) is an unreduced form of A×B, since it has
non zero coefficients ci on rows i = n + 1, . . . , 2n. It must be reduced modulo
P = βn + βk + 1, to get an expression of C in B. We have

Subquadratic Space Complexity Multiplication over Binary Fields 99

βi = βnβi−n + β2n−i

= (βk + 1)βi−n + β2n−i

= βi−n+k︸ ︷︷ ︸
(R1)

+ β|i−n−k|︸ ︷︷ ︸
(R2)

+ βi−n︸︷︷︸
(R3)

+ β2n−i︸ ︷︷ ︸
(R4)

In Figure 1 we give the reduction process obtained by replacing in C =∑2n
i=1 ciβi each βi for i > n by the expression given above.
The process depicted in Figure 1 must be performed two times to get C

expressed in the Dickson basis B, since k ≤ n/2. The full reducing part requires
8n XOR gates and is performed in time 6TX .

+

+

+

+

+

C

R1

R4

R3

R2

c 2nccc1 c ck+1k n n+1

c c c cnk+1k1

R2

c2n

cn+1c2n c2n−1

cn+1 cn+2

c2n

c2n

cn+1 cn+2

cn+k

cn+k+1

cn+1

Fig. 1. Dickson Trinomial Reduction Process

Table 4. Complexity of Dickson Multiplier

Method b Space Time
AND # XOR

Dick. Bin. 2 2nlog2(3) 11nlog2(3) − 11n (2 log2(n) + 1)TX + TA

3 2nlog3(6) 48/5nlog3(6) − 11n + 3/5 (3 log3(n) + 1)TX + TA

Dick. Tri. 2 2nlog2(3) 11nlog2(3) − 4n + 1 (2 log2(n) + 6)TX + TA

3 2nlog3(6) 48/5nlog3(6) − 2n + 1/5 (3 log3(n) + 6)TX + TA

ONB I [3] 2 nlog2(3) + n 5.5nlog2(3) − 4n − 0.5 (2 log2(n) + 1)TX + TA

3 nlog3(6) + n 24/5nlog3(6) − 3n − 4/5 (3 log3(n) + 1)TX + TA

ONB II [3] 2 2nlog2(3) 11nlog2(3) − 12n + 1 (2 log2(n) + 1)TX + TA

3 2nlog3(6) 48/5nlog3(6) − 10n − 2/5 (3 log3(n) + 1)TX + TA

100 M.A. Hasan and C. Negre

5 Complexity and Comparison

In this section we provide the corresponding complexity of each of our multipliers
presented in the previous section. The complexities are easily deduced from
complexity given in Table 2.

In a recent paper Mullin et al. [7] pointed out that there were some links
between the Dickson basis and the normal basis. In practice, a Dickson basis is
interesting when no optimal normal basis exists for the considered field. This is
the case for NIST recommended binary fields F2163 and F2283 .

In Table 5 we give fields which can be constructed with a Dickson binomial.
In Table 6 we give irreducible Dickson trinomials of low degree. We can remark
that NIST fields can be constructed with Dickson trinomials, and thus we obtain
a subquadratic multiplier in each of these cases.

We also note that recently a type II optimal normal basis has been presented
in [5] using the FFT technique, which normally outperforms other sub-quadratic
complexity multipliers for very large values of n. Hardware architectures of bit-
serial type multipliers using the Dickson basis have been presented in [1].

6 Conclusion

In this paper we have presented new parallel multipliers based on Dickson basis
representation of binary fields. The multiplier for an irreducible Dickson bino-
mial has a complexity similar to subquadratic multiplier for ONB II. For an
irreducible Dickson trinomial, the multiplier has a slightly more space complex-
ity, but can be used for fields with degree less than 300.

References

1. Ansari, B., Anwar Hasan, M.: Revisiting finite field multiplication using dickson
bases. Technical report, University of Waterloo, Ontario, Canada (2007)

2. Dickson, L.E.: The analytic representation of substitutions on a power of a prime
number of letters with a discussion of the linear group. Ann. of Math. 11, 161–183
(1883)

3. Fan, H., Hasan, M.A.: A new approach to sub-quadratic space complexity parallel
multipliers for extended binary fields. IEEE Trans. Computers 56(2), 224–233 (2007)

4. Fan, H., Hasan, M.A.: Subquadratic computational complexity schemes for extended
binary field multiplication using optimal normal bases. In: IEEE Trans. Computers
(2008)

5. Giorgi, P., Negre, C., Plantard, T.: Subquadratic binary field multiplier in double
polynomial system. In: SECRYPT 2007, Barcelona, Spain (2007)

6. Lild, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monograpah
and Survey n Pure and Applied Mathematic, vol. 65 (1993)

7. Mullin, R.C., Mahalanobis, A.: Dickson bases and finite fields. Technical report,
Universite of Waterloo, Ontario (2007)

Subquadratic Space Complexity Multiplication over Binary Fields 101

Appendix

A Binomials and Trinomials for Field Definition

In Table 5 we give the degree n ∈ [160, 300] of field F2n = F2[X]/(P) where P
satisfies

P × (X + 1) = βn+1 + 1,

βn+1 is a Dickson polynomial. For such field, binomial subquadratic multiplier
can be used to perform the multiplication.

Table 5. Degrees of fields which admit a binomial subquadratic multiplier

n 167, 173, 198, 196, 190, 198, 238, 252, 262, 268, 270

Table 6. Irreducible Dickson trinomials βn + βk + 1

n k

163 43, 67, 97, 100, 128, 155
165 66, 78, 114, 132
167 68, 88
170 5, 11,25,55,61,71,125,155,157
171 144
172 95
173 40,82,85
175 26,158
176 79,89
178 65,73
179 85
181 35, 115, 134
183 138
184 151
187 28,32,95,115,128,163
188 73
189 54
191 14,74,106,124,146
193 188
194 25, 55
197 88, 107, 110, 155, 170
199 86
200 7,17,31,77

n k

201 84
202 7,187
203 5, 107, 113
205 43, 53, 109, 169, 179, 193
207 18, 180
208 7,125
211 19,85,95
212 73
215 22,64,98,122,166
218 113,127,133,137
219 120,156
220 167
221 14,46,71,145,200,209
223 82,190
224 101
225 36,72, 144
226 121,205
227 125,145
229 50
231 30,114,156
235 13,17,32,37,88,103,112,128,173
237 42
239 124,164,220

102 M.A. Hasan and C. Negre

Table 6. (continued)

n k

241 16,160,176,200
242 85, 223
244 121,169
245 37,43,52,61,116,172,187
247 22,50,110,245
248 65,137
250 25,85,125,155,175,181,
250 185,209,217,245
251 119,145,211
253 7,10, 23, 115, 142, 158, 170, 205
255 174,186
256 91,209
259 5,20
259 160
260 97
261 234
263 20,98,178
265 112
268 25
269 34,49,125,140,146,190,254
271 46

n k

272 7,235,245
273 240
274 65,101,181,205,269
275 44,59,88,176,227
277 70,95,98,118,125,130,175
279 90,234
280 17,103,173,197
283 37,80,145,155,157,215,95
285 42,132
285 246
289 40, 280
290 41, 53, 79, 85 ,113,125,163,185
291 24, 25
292 133,265
293 17,55,82,100,140,
293 227,233,262,275,278
295 46,62,154,254
296 65,221
298 35,97
299 119,145

Digit-Serial Structures for the Shifted

Polynomial Basis Multiplication over Binary
Extension Fields

Arash Hariri and Arash Reyhani-Masoleh

Department of Electrical and Computer Engineering
The University of Western Ontario, London, Ontario, Canada

hariri@ieee.org, areyhani@eng.uwo.ca

Abstract. Finite field multiplication is one of the most important op-
erations in the finite field arithmetic. Recently, a variation of the poly-
nomial basis, which is known as the shifted polynomial basis, has been
introduced. Current research shows that this new basis provides bet-
ter performance in designing bit-parallel and subquadratic space com-
plexity multipliers over binary extension fields. In this paper, we study
digit-serial multiplication algorithms using the shifted polynomial basis.
They include a Most Significant Digit (MSD)-first digit-serial multiplica-
tion algorithm and a hybrid digit-serial multiplication algorithm, which
includes parallel computations. Then, we explain the hardware archi-
tectures of the proposed algorithms and compare them to their existing
counterparts. We show that our MSD-first digit-serial shifted polynomial
basis multiplier has the same complexity of the Least Significant Digit
(LSD)-first polynomial basis multiplier. Also, we present the results for
the hybrid digit-serial multiplier which offers almost the half of the la-
tency of the best known digit-serial polynomial basis multipliers.

Keywords: Shifted polynomial basis, multiplication, binary extension
fields, digit-serial.

1 Introduction

Finite field arithmetic has an important application in cryptographic algorithms
including the elliptic curve cryptography. It has gained lots of interest in the
literature, e.g., [1,2,3,4,5,6], and [7]. Designing efficient finite field arithmetic cir-
cuits directly affects the performance of the cryptosystems. Multiplication is one
of the most important operations in the finite field arithmetic. This operation
has been considered by researchers from different points of view. The most com-
mon approaches are based on the polynomial basis [3,4,6,8], normal basis [9,10],
dual basis [7,11], and the Montgomery multiplication [12,13,14] algorithms. Each
of these categories offers different time and area complexities and has its own
advantages and disadvantages.

The Shifted Polynomial Basis (SPB) is a variation of the polynomial basis
which is proposed in [15]. This basis is constructed by multiplying a polynomial
basis by x−v, where x is the root of the irreducible polynomial, v is an integer,

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 103–116, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

104 A. Hariri and A. Reyhani-Masoleh

and 0 ≤ v ≤ m−1. In [2], bit-parallel multipliers are designed based on the SPB
for irreducible trinomials and type-II pentanomials, which are faster than the
best known polynomial basis and dual basis multipliers. Similarly, it is shown in
[16] that the squarers designed using the SPB are faster than their polynomial ba-
sis counterparts. Using the SPB, a new approach for designing subquadratic area
complexity parallel multipliers is outlined in [17], where the reported multipliers
are better than the other similar ones in terms of area and time complexities.
Also using the SPB, different bit-parallel multipliers are designed for irreducible
pentanomials and trinomials in [18] and [19], respectively.

Considering the structure of the algorithm in terms of the number of bits
processed at each step, the multipliers over binary extension fields can be clas-
sified into three main categories, namely, bit-serial, digit-serial, and bit-parallel
multipliers. In bit-serial multipliers, only one bit of the operand is processed
in any cycle. This results in reducing the required hardware for implementing
the multiplication algorithm. However, bit-serial multipliers are generally slow.
Therefore, this type of multiplication algorithms is suitable for the applications
where the low-area complexity is preferred over the time complexity. On the
other hand, bit-parallel multipliers have opposite properties. In this type of mul-
tipliers, the coordinates of the operands are processed in parallel, which results in
a good time complexity; however they require much more area than the bit-serial
multipliers do.

Digit-serial multipliers are alternatives for bit-serial and bit-parallel multipli-
ers depending on the amount of the resources available. In this type of multi-
pliers, one can trade off between the speed and the area of the multipliers by
choosing different digit sizes. In general, greater digit sizes result in faster mul-
tipliers with more area; however the hardware overhead is not proportional to
the improvement in the time complexity, see for example [20].

In this paper, we study digit-serial shifted polynomial basis multiplication. In
this regard, we present the general formulation for the digit-serial multiplication
using the shifted polynomial basis and derive an MSD-first digit-serial multi-
plication algorithm. Then, we choose efficient values to construct the shifted
polynomial basis, which reduce the time and area complexities of the general
digit-serial multiplication operation. Based on the presented formulation and
the algorithm, we also propose an additional digit-serial shifted polynomial ba-
sis multiplication algorithm. This multiplication algorithm, which is denoted as
hybrid, uses parallel operations to obtain the multiplication product. We com-
pare the proposed multiplication algorithms to the digit-serial polynomial basis
multiplication algorithms and show that their complexities match or outperform
them. More importantly, the presented hybrid algorithm reduces the latency of
the multiplication to half of the latency in polynomial basis multiplication, while
it has the same critical path delay.

The rest of this paper is organized as follows. In Section 2, we provide the
preliminary background. In Section 3, we consider digit-serial shifted polyno-
mial basis multiplication. Then in Section 4, we provide our discussions and
comparisons. Finally, we conclude this paper in Section 5.

Digit-Serial Structures for the Shifted Polynomial Basis Multiplication 105

2 Preliminaries

In this section, we provide the mathematical formulations to derive our shifted
polynomial basis multiplication algorithms. First, we present a short introduc-
tion to the binary extension field and then, we explain the shifted polynomial
basis.

The binary extension field [21], also known as GF (2m), is a finite field which
includes 2m field elements. Each GF (2m) is associated with an irreducible poly-
nomial, i.e., F (z), which is defined over GF (2). The irreducible polynomial F (z)
is of degree m and can be represented as

F (z) = zm + fm−1z
m−1 + · · ·+ f1z + 1, (1)

where fi ∈ {0, 1} for i = 1 to m − 1. Assuming x is the root of the irreducible
polynomial F (z), i.e., F (x) = 0, the set {1, x, x2, . . . , xm−1} is known as the
polynomial basis. This set is used to represent the elements of GF (2m) as poly-
nomials over GF (2), where ai, bi ∈ {0, 1} for i = 0 to m− 1.

Assuming v is an integer, 0 ≤ v ≤ m− 1, and the set {1, x, x2, . . . , xm−1} is a
polynomial basis for GF (2m), the Shifted Polynomial Basis (SPB) for GF (2m)
is defined as the set {x−v, x−v+1, . . . , xm−v−1} [15]. Similar to the polynomial
basis, it is possible to represent each field element using the SPB. For example,
if A and B are two elements of GF (2m), one can write

A =
m−1∑
i=0

aix
i−v , B =

m−1∑
i=0

bix
i−v , (2)

where ai, bi ∈ {0, 1} for i = 0 to m− 1.
The addition of two field elements, represented in the SPB, is carried out by

the XOR operation. However, the multiplication of two field elements is com-
plicated and requires more resources. The multiplication in the SPB is defined

as C =
m−1∑
i=0

cix
i−v = A · B mod F (x). The multiplication result, C, is also a

field element of degree m − 1. This operation can be carried out by using dif-
ferent multiplication algorithms including bit-serial, bit-parallel, and digit-serial
algorithms. In the next section, we present digit-serial algorithms for this mul-
tiplication.

3 Digit-Serial Shifted Polynomial Basis Multiplication

In a digit-serial multiplier, the bits are grouped as digits and at each cycle, one
digit is processed. We define D ≥ 2 to be the digit size, which means each digit
has D bits. We start from the Least Significant Bit (LSB) of the operand B, i.e.,
b0, and group D consecutive bits as a digit. This results in having n = 	m/D

digits in operand B. Consequently, we obtain

B =
n−1∑
i=0

Bix
iD−v , (3)

106 A. Hariri and A. Reyhani-Masoleh

where

Bi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D−1∑
j=0

bDi+jx
j , 0 ≤ i ≤ n− 2

m−1−D(n−1)∑
j=0

bDi+jx
j , i = n− 1

(4)

Using (3) and

C = A · B mod F (x), (5)

one can write the general formulation of the digit-serial SPB multiplication
as

C =B0Ax−v + B1AxD−v + · · ·+ Bn−1Ax(n−1)D−v mod F (x). (6)

Now, we try to find appropriate values for v to design efficient digit-serial SPB
multipliers. By inspecting (6), we propose to choose v = (n − 1)D. The reason
is that in this case we have Ax(n−1)D−v = A and there is no need to compute
Ax(n−1)D−v before processing the digits of B. As a result, we are interested
in (n − 1)D − v = 0, which results in the proposed value for v. Now using
v = (n− 1)D, we rewrite (6) as

C = B0Ax−(n−1)D + B1Ax−(n−2)D + · · ·+ Bn−1Amod F (x). (7)

Now, we can propose a digit-serial SPB multiplication algorithm, namely
the Most Significant Digit (MSD)-first digit-serial SPB multiplication algorithm
based on (7).

3.1 The MSD-First Digit-Serial SPB Multiplier

Using (7), one can design the MSD-first digit-serial SPB multiplier in which the
operand B is processed from its MSD, i.e., Bn−1. We show the algorithm corre-
sponding to this multiplier in Algorithm 1 for general irreducible polynomials.
Note that v = (n−1)D is chosen to construct the shifted polynomial basis. Step
1 in Algorithm 1 is the initialization and the main operations of the algorithm
include a multiplication followed by an addition in Step 3 and a multiplication
by x−D followed by a reduction by F (x) in Step 4. In this algorithm, A′ and C′

can be represented as

A′ =
m−1∑
i=0

a′
ix

i−v, C′ =
m+D−2∑

i=0

c′ix
i−v . (8)

The structure of the MSD-first digit-serial SPB multiplier is shown in Fig. 1.
This structure includes two loops. The right and the left loops implement Step 3
and Step 4 of Algorithm 1, respectively. The module represented by × multiplies
A′ (a polynomial of degree m− v − 1) by a digit of B, i.e., Bi (a polynomial of
degree D− 1), for i = 0 to n− 1, and as a result, its output has m + D− 1 bits.

Digit-Serial Structures for the Shifted Polynomial Basis Multiplication 107

Algorithm 1. The MSD-first digit-serial SPB multiplication
Inputs: A, B, F (x), n = m/D� , v = (n − 1)D
Output:C = A · B mod F (x)
Step 1: A′ := A, C′ := 0
Step 2: For i := 0 to n − 1
Step 3: C′ := Bn−i−1A

′ + C′

Step 4: A′ := A′ · x−D mod F (x)
Step 5: C := C′ mod F (x)

× XORA C
Dx

1 2 3 1 0n n nB B B B B

m

m m

D

m+D-1

m+D-1 m+D-1

mod
()F x m

C

()iC
(1)iC

()iA(1)iA

Fig. 1. The MSD-first digit-serial SPB multiplier

This module is shown in Fig. 2a for m = 11, D = 3, and v = 9, where Bi,j means
the j-th bit of the i-th digit. The module represented by XOR adds the result
of the ×-module with the current value of C′ and stores it in C′ again. In this
structure, C′ is an (m+D−1)-bit register which contains the coordinates of the
polynomial C′ shown in (8). The x−D-module multiplies A′ by x−D and reduces
the result by F (x) as shown in Fig. 2b. The final result, shown in (8), is stored
in A′ using an m-bit register. The final modF (x) module implements Step 5 of
Algorithm 1, which is the final step and is a reduction of a polynomial of degree
(m − v + D − 2) by F (x). This operation has a similar structure to Fig. 2b,
however in this case, (D−1) terms which are of degree m− v to (m− v+D−2)
should be reduced. As a result, there should be (D − 1) rows in Fig. 2b for this
operation. Note that in Fig. 1, A′(i) and C′(i) show the content of the registers
A′ and C′ at the i-th iteration of Algorithm 1, respectively.

In Algorithm 1, Step 3 and Step 4 are performed in parallel. As a result, the
critical path delay of the multiplier is equal to the maximum of the delays in Step
3 and Step 4. In Step 3 of Algorithm 1, the m-bit A′ is multiplied by the D-bit
Bn−i−1 and then, the result is added to C′. Let TA and TX represent the delay
of a two-input AND gate and the delay of a two-input XOR gate, respectively.
This Step requires the delay of TA to obtain the partial products, and then the
delay of 	log2(D + 1)
TX to sum up D rows of partial products with C′ using
an XOR tree in the general case (see Fig. 2a). As a result, it requires the delay
of TA + 	log2(D + 1)
TX . In Step 4 of Algorithm 1, the m-bit A′ is multiplied
by x−D followed by the modulo F (x) reduction. Generally, this can be obtained
by the delay of D(TA+TX) (see Fig. 2b). Consequently, the multiplier associated

108 A. Hariri and A. Reyhani-Masoleh

1m D

m

,0iA B

,1iA B

,2iA B

i
A B

9x0x 8x7x6x4x3x2x1x 5x1x2x3x

D+

+

+

(a)

D

10x9x0x 8x7x6x4x3x2x1x 5x 12x11x

D

× ()F x

× ()F x

× ()F x

1x

+

+

+

DA x

(b)

Fig. 2. (a) Multiplication by Bi, (b) multiplication by x−D followed by reduction

with Algorithm 1 has the critical path delay of D(TA + TX). Also, the latency
of this multiplier is n + 1 clock cycles or equivalently, 	m/D
 + 1 clock cycles,
including the final modF (x) operation.

Note that it is possible to do the reduction each time in Step 3 of Algorithm 1,
however it increases the critical path delay of the multiplication, especially when
the time complexity of the multiplication by x−D followed by the modulo F (x)
reduction is optimized.

In Fig. 1, the ×-module and the XOR module together require D ×m two-
input AND gates and D ×m two-input XOR gates. The x−D-module requires
D × (m − 1) two-input AND gates and D × (m − 1) two-input XOR gates,
and the modF (x) operation requires (D − 1) × (m − 1) two-input AND gates
and (D − 1)× (m − 1) two-input XOR gates for the general case of irreducible
polynomials. Also, there are (2m + D − 1) registers in this architecture. As a
result, we can conclude the following to obtain the complexities of the proposed
MSD-first digit-serial SPB multiplier.

Proposition 1. The MSD-first digit-serial SPB multiplier of Fig. 1 requires
D× (3m− 2)−m+1 two-input AND gates and D× (3m− 2)−m+1 two-input
XOR gates and (2m + D − 1) registers. Also, it has the critical path delay of
D(TA + TX) and the latency of n + 1 clock cycles.

It is interesting to note that the proposed MSD-first digit-serial SPB multiplica-
tion algorithm has the same area and time complexities in comparison with the
LSD-first polynomial basis multiplication algorithm proposed in [1].

3.2 Hybrid Digit-Serial SPB Multiplication

From (6), the SPB multiplication can be formulated as

C =B0Ax−v + B1AxD−v + · · ·+ B	n
2
Ax	n

2
D−v+

· · ·+ Bn−1Ax(n−1)D−v mod F (x).
(9)

Digit-Serial Structures for the Shifted Polynomial Basis Multiplication 109

Now, we choose v = �n
2 �D to rewrite (9) as

C =B0Ax−	n
2
D + B1AxD−	n

2
D + · · ·+ B	n
2
−1Ax−D+

B	n
2
A + B	n

2
+1AxD · · ·+ Bn−1Ax	n−2
2
D mod F (x).

(10)

It is clear from (10) that C includes two parts. One part is based on the
positive powers of x and the other part is based on the negative powers of x. We
can show this fact by

C = C′ + C′′, (11)

where

C′ =B0Ax−	n
2
D + B1AxD−	n

2
D + · · ·+
B	n

2
−1Ax−D mod F (x),
(12)

and

C′′ =B	n
2
A + B	n

2
+1AxD + · · ·+
Bn−1Ax	n−2

2
D mod F (x).
(13)

We note that obtaining C′ is a digit-serial SPB multiplication which considers
the �n

2 � least significant digits of the operand B. On the other hand, obtaining C′′

is a digit-serial polynomial basis multiplication which involves the n−�n
2 � most

significant digits of the operand B. As explained in the previous section, these
two parallel operations can be implemented with an equal critical path delay. A
similar approach is outlined in [13] for the digit-serial Montgomery multiplication
over binary extension fields. However, two parallel operations of the algorithm
in [13] have different critical path delays for general irreducible polynomials. For
example, in the simplest case, i.e., one-bit digits, one of the parallel operations
(the polynomial basis multiplication) has the critical path delay of TA + TX ,
but the other one (the Montgomery multiplication) has the critical path delay
of 2TA + 2TX . Also, this technique is applied on the Montgomery multiplication
of integers in [22].

Now, based on our proposed MSD-first digit-serial SPB multiplier and also
the available LSD-first digit-serial polynomial basis, e.g., [1], we propose an al-
gorithm to reduce the time complexity of the digit-serial SPB multiplication.
This algorithm is shown in Algorithm 2. Note that in this algorithm B−1 and
Bn are equal to zero. It is seen from Algorithm 2 that two multiplications are
carried out in parallel and two partial products are summed up and reduced by
F (x) in Step 7. In this algorithm, A′, A′′, C′, and C′′ can be represented as

110 A. Hariri and A. Reyhani-Masoleh

A′ =
m−1∑
i=0

a′
ix

i−v, C′ =
m+D−2∑

i=0

c′ix
i−v ,

A′′ =
m−1∑
i=0

a′′
i xi−v, C′′ =

m+D−2∑
i=0

c′′i xi−v.

Algorithm 2. Hybrid digit-serial SPB multiplication
Inputs: A, B, F (x), n = m/D� , v = �n

2
�D

Output:C = A · B mod F (x)
Step 1: A′ := A, C′ := 0, C′′ = 0, A′′ := A
Step 2: For i := 0 to �n

2
�

Step 3: A′ := A′ · x−D mod F (x)
Step 4: C′ := C′ + B� n

2 �−1−iA
′

Step 5: C′′ := C′′ + B� n
2 �+iA

′′

Step 6: A′′ := A′′ · xD mod F (x)
Step 7: C := C′ + C′′ mod F (x)

The hardware structure of Algorithm 2 is shown in Fig. 3. In this figure, the
top structure obtains (12) and the bottom structure obtains (13). The modules
of this figure are similar to the ones used in Fig. 1. The module labeled xD

performs a multiplication by xD followed by a reduction by F (x). Also, A′ and
A′′ are m-bit registers, whereas C′ and C′′ are (M + D − 1)-bit registers.

It is noted that for odd values of n, there are �n
2 � terms in (12) and �n

2 �+ 1
terms in (13). Obtaining C′ requires �n

2 � + 1 clock cycles and it is because the
polynomial Ax−D mod F (x) should be pre-computed. As a result, a zero is fed
to the top structure in Fig. 3 to perform the pre-computation. But, the first
term in obtaining C′′ is B	n

2
A which does not require any pre-computation.
Consequently, both C′ and C′′ can be obtained after �n

2 � + 1 clock cycles. For
even values of n, both (12) and (13) include n

2 terms. However, C′ needs n
2 + 1

clock cycles and C′′ requires n
2 clock cycles. We explain the complexity of this

algorithm in the next section.

4 Discussion and Comparison

In this section, we consider the time complexity of the proposed digit-serial SPB
multipliers in more details and extend the results of [1] to the proposed digit-
serial SPB multipliers.

The main operation in Algorithm 1 is the multiplication by x−D followed by
a reduction by F (x). Thus, by making this operation faster, one can reduce the

Digit-Serial Structures for the Shifted Polynomial Basis Multiplication 111

× XORA C
Dx

1 0
1

2

0 nB B B

m

m m

D

m+D-1m+D-1 m+D-1

()iC
(1)iC

()iA(1)iA

× XORA C
Dx

2 1
2
n n nB B B

m

m m

D

m+D-1m+D-1 m+D-1

()iC(1)iC
()iA(1)iA

mod
()F x m

C
XOR

Fig. 3. Architecture of the hybrid digit-serial SPB multiplication (Algorithm 2)

critical path delay of the proposed multipliers. Assuming T ∈ GF (2m), we have
the following

T · x−D =(tm−1x
m−v−1 + · · ·+ tDxD−v + tD−1x

D−v−1 + · · ·
+ t1x

−v+1 + t0x
−v) · x−D mod F (x),

=(tm−1x
m−v−D−1 + · · ·+ tDx−v + tD−1x

−v−1 + · · ·
+ t1x

−v−D+1 + t0x
−v−D)mod F (x).

(14)

There are D terms in (14) which should be reduced by F (x) i.e., (tD−1x
−v−1+

· · · + t1x
−v−D+1 + t0x

−v−D)mod F (x). As a result, the complexity of (14) de-
pends on the irreducible polynomial F (x) and the value of D. In this regard, we
present the following proposition.

Proposition 2. Assume F (z) = zm+
m−1∑
i=l+1

fiz
i + flz

l + 1 is an irreducible poly-

nomial over GF (2) and x is a root of F (z). In this case, no reduction is required
to represent x−v−k in the shifted polynomial basis if k ≤ l.

Proof. We can write

F (x) =xm +
m−1∑
i=l+1

fix
i + flx

l + 1 = 0,

⇒x−v−k × (xm +
m−1∑
i=l+1

fix
i + flx

l + 1) = 0,

112 A. Hariri and A. Reyhani-Masoleh

or

xm−v−k +
m−1∑
i=l+1

fix
i−v−k + flx

l−v−k = x−v−k.

So, if l− v− k ≥ −v, then the left side of the equation above is already in the
SPB, Thus, no reduction is required for l ≥ k and the proof is complete. �

Now, we can propose the following lemma which is used to obtain the complexity
results of the proposed digit-serial SPB multipliers.

Lemma 1. Let {x−v, x−v+1, . . . , xm−v−1} be the SPB and A be a field element,

where x is a root of the irreducible polynomial F (z) = zm +
m−1∑
i=l+1

fiz
i + flz

l + 1.

Then, A · x−D modF (x) can be represented in the shifted polynomial basis by
only one step of reduction if D ≤ l, where D is the digit size. In this case,
A · x−D modF (x) is obtained with the delay of TA + 	log2(D + 1)
TX for the
general case.

Proof. We can represent A ∈ GF (2m) as

A = am−1x
m−v−1 + · · ·+ a2x

−v+2 + a1x
−v+1 + a0x

−v,

and consequently,

A · x−D = am−1x
m−v−1−D + · · ·+ a2x

−v+2−D + a1x
−v+1−D + a0x

−v−D.

By using proposition 2, it is clear that the terms whose powers of x are
between −v− 1 and −v−D, i.e., aD−1x

−v−1 and a0x
−v−D, can be represented

in the shifted polynomial basis by only one step of reduction if D ≤ l. These
D terms can be reduced in parallel with the delay of TA and then, they should
be summed up with the other term of A · x−D. This requires the total delay of
TA + 	log2(D + 1)
TX . �
Obtaining A ·x−D mod F (x) for D ≤ l is depicted in Fig. 4. In this case, D terms
should be reduced by the irreducible polynomial which requires D× (m− l) two-
input AND gates as fm = 1. Then, they should be added to the rest of the terms
in A · x−D by using D × (m− l + 1) XOR gates.

Remark 1. The area and time complexities of the proposed hybrid digit-serial
SPB multiplier can be obtained using the results presented for the MSD-first
digit-serial SPB multipliers. This algorithm has the critical path of the MSD-
first digit-serial SPB multiplication algorithm, however its latency is almost the
half of that of the MSD-first digit-serial SPB multiplication algorithm. One can
achieve this latency using the LSD-first digit-serial polynomial basis multipliers
if the digit size 2D is chosen. However, this results in doubling the critical path
delay in the general case or adding an extra delay of an XOR gate in the special

Digit-Serial Structures for the Shifted Polynomial Basis Multiplication 113

D

1m l

10x9x0x 8x7x6x4x3x2x1x 5x 12x11x

D
1x

Fig. 4. Multiplication by x−D followed by reduction for D ≤ l

cases. The hardware overhead of the hybrid digit-serial SPB multiplier with the
digit size D in comparison to the digit-serial polynomial basis multiplier with
digit size 2D is 2m registers and m+D−1 XOR gates. In general, the time×area
factor of the hybrid digit-serial SPB multiplier is equal to that of the MSD-first
digit-serial SPB multiplier. However, better results can be achieved if different
structures like semi-systolic arrays used to implement the hybrid digit-serial
algorithms. This is because the lower latency results in reducing the number of
the required rows of the semi-systolic array and as a result, even for equal digit
sizes, the hardware overhead will be very low.

By using Lemma 1, the time complexity of the proposed digit-serial SPB multi-
pliers is presented in Table 1.

It is possible to construct the shifted polynomial basis using v = m− 1 which
extends the range of the efficient digit sizes. In this case, the operand B is

Table 1. Time Complexity of the Digit-Serial Multipliers over Binary Extension Fields

Algorithm Type Critical Path delay Latency

F (z) = zm + fwzw +
w−1∑

i=l+1

fiz
i + flz

l + 1, D > min{ l, m − w}
Algorithm 1: MSD-first SPB D(TA + TX) n + 1

Algorithm 2: Hybrid SPB D(TA + TX)
⌊

n
2

⌋
+ 2

F (z) = zm + fwzw +
w−1∑
i=1

fiz
i + 1, D > m − w

MSD-first [1] Polynomial basis D(TA + TX) + TX n + 1

LSD-first [1] Polynomial basis D(TA + TX) n + 1

F (z) = zm + fwzw +
w−1∑

i=l+1

fiz
i + flz

l + 1, 2 ≤ D ≤ min{ l, m − w}
Algorithm 1: MSD-first SPB TA + log2(D + 1)�TX n + 1

Algorithm 2: Hybrid SPB TA + log2(D + 1)�TX

⌊
n
2

⌋
+ 2

F (z) = zm + fwzw +
w−1∑
i=1

fiz
i + 1, 2 ≤ D ≤ m − w

MSD-first [1] Polynomials basis TA + log2(2D + 1)�TX n + 1

LSD-first [1] Polynomials basis TA + log2(D + 1)�TX n + 1

114 A. Hariri and A. Reyhani-Masoleh

represented as B = bm−1 + bm−2x
−1 + · · · + a0x

−(m−1). This time, instead of
grouping the bits from right to left (e.g., starting from the LSB), we start from
the MSB of B and group D consecutive terms to form a digit of degree at most
−(D − 1), i.e.,

B′
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D−1∑
j=0

bm−Di−j−1x
−j , 0 ≤ i ≤ n− 2

m−1−D(n−1)∑
j=0

bm−Di−j−1x
−j , i = n− 1

(15)

So, B = B′
0+B′

1x
−D+..+B′

n−1x
−(n−1)D. An algorithm similar to Algorithm 1

can be used as well. However in this case, the coefficients of C′ in Step 3 of
Algorithm 1 have degrees between −v−D + 1 and m− v −D. This is depicted
in Fig. 5a for m = 11, v = 10, and D = 5, where B′

i,j represents the j-th bit
of B′

i. Note that the partial products are shifted to the right in this case. The
complexity of the multiplication of a field element by B′

i is the same as the one
shown in Fig. 2a. Therefore, the reductions in Steps 3 and 4 of Algorithm 1 are
similar in this case and as a result, the digit size should satisfy 2 ≤ D ≤ l for
the fast multiplication.

1m D

m

,0i
A B

,1i
A B

,2i
A B

,3i
A B

,4i
A B

i
A B

10x9x0x 8x7x6x4x3x2x1x 5x 14x13x12x11x

D

(a)

1m D

m

,0i
A B

,1i
A B

,2i
A B

,3i
A B

,4i
A B

10x9x0x 8x7x6x4x3x2x1x 5x 14x13x12x11x

Acc 1

Acc 2

2

D

2

D

(b)

Fig. 5. Multiplication by B′
i using (a) single accumulator, (b) double accumulator

An example: We use m = 163 which is recommended by NIST for elliptic curve
digital signatures algorithm [23]. Considering F (z) = z163 + z97 + z96 + z95 + 1
as an irreducible pentanomial, the digit size in Algorithm 1 should satisfy 2 ≤
D ≤ 66 which results in efficient implementation. For the digit-serial polynomial
basis multiplication algorithms of [1], the digit size should satisfy 2 ≤ D ≤ 66 to
provide the same complexity. As a result, the digit-size for the hybrid digit-serial
SPB multipliers should satisfy 2 ≤ D ≤ 66. Using v = m− 1 and grouping the
coordinates of B from left to right, the digit size should satisfy 2 ≤ D ≤ 95.

The techniques introduced in [8] can be extended to the SPB to reduce the
time complexity of the digit-serial multipliers as well. In this case, multiple
accumulators are used to implement the multiplication A × B′

i. This is shown

Digit-Serial Structures for the Shifted Polynomial Basis Multiplication 115

in Fig. 5b using two accumulators. The main difference is that the results of [8]
are presented for the multiplication by xD followed by a reduction. However, it
is possible to extend them to the multiplication by x−D followed by a reduction
used in the SPB.

5 Conclusions

In this paper, we have studied the SPB multiplication over binary extension fields
and proposed digit-serial multiplication algorithms. In this regard, we have pro-
posed two digit-serial SPB multiplication algorithms. The proposed MSD-first
digit-serial algorithm is as efficient as the LSD-first polynomial basis multiplica-
tion algorithm, which is the fastest algorithm for digit-serial polynomial multi-
plication. Also, we have studied the possible cases to reduce the complexity of
the digit-serial SPB multipliers based on the chosen digit size and the irreducible
polynomial.

We have also proposed a hybrid algorithm which uses parallel computations
to make the multiplication process faster. This algorithm has half of the latency
of the LSD-first digit-serial polynomial basis multiplier with the same critical
path delay, as one of the fastest digit-serial polynomial basis multipliers.

Acknowledgment

The authors would like to thank the reviewers for their constructive comments.
This work has been supported in part by an NSERC Discovery grant awarded
to Arash Reyhani-Masoleh.

References

1. Song, L., Parhi, K.: Low-Energy Digit-Serial/Parallel Finite Field Multipliers. The
Journal of VLSI Signal Processing 19(2), 149–166 (1998)

2. Fan, H., Hasan, M.: Fast Bit Parallel Shifted Polynomial Basis Multipliers in
GF (2n). IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications 53(12), 2606–2615 (2006)

3. Imana, J., Sanchez, J.: Bit-Parallel Finite Field Multipliers for Irreducible Trino-
mials. IEEE Transactions on Computers 55(5), 520–533 (2006)

4. Reyhani-Masoleh, A., Hasan, M.: Low Complexity Bit Parallel Architectures for
Polynomial Basis Multiplication over GF (2m). IEEE Transactions on Comput-
ers 53(8), 945–959 (2004)

5. Yeh, C.S., Reed, I.S., Truong, T.K.: Systolic Multiplier for Finite Fields GF (2m).
IEEE Transactions on Computers C-33, 357–360 (1983)

6. Beth, T., Gollman, D.: Algorithm Engineering for Public Key Algorithms. IEEE
Journal on Selected Areas in Communications 7(4), 458–466 (1989)

7. Rodriguez-Henriguez, F., Koc, C.: Parallel Multipliers Based on Special Irreducible
Pentanomials. IEEE Transactions on Computers 52(12), 1535–1542 (2003)

116 A. Hariri and A. Reyhani-Masoleh

8. Kumar, S., Wollinger, T., Paar, C.: Optimum Digit Serial GF (2m) Multipliers for
Curve-Based Cryptography. IEEE Transactions on Computers 55(10), 1306–1311
(2006)

9. Koc, C.K., Sunar, B.: Low-Complexity Bit-Parallel Canonical and Normal Basis
Multipliers for a Class of Finite Fields. IEEE Transactions on Computers 47(3),
353–356 (1998)

10. Sunar, B., Koc, C.K.: An Efficient Optimal Normal Basis Type II Multiplier. IEEE
Transactions on Computers 50(1), 83–87 (2001)

11. Wu, H., Hasan, M., Blake, I.: New Low-Complexity Bit-Parallel Finite Field Mul-
tipliers Using Weakly Dual Bases. IEEE Transactions on Computers 47(11), 1223–
1234 (1998)

12. Koc, C., Acar, T.: Montgomery Multiplication in GF (2k). Designs, Codes and
Cryptography 14(1), 57–69 (1998)

13. Batina, L., Mentens, N., Preneel, B., Verbauwhede, I.: Balanced Point Operations
for Side-Channel Protection of Elliptic Curve Cryptography. Information Security,
IEE Proceedings 152(1), 57–65 (2005)

14. Horng, J.S., Lu, E.H.: Low-Complexity Bit-Parallel Systolic Montgomery Mul-
tipliers for Special Classes of GF(2m). IEEE Transactions on Computers 54(9),
1061–1070 (2005)

15. Fan, H., Dai, Y.: Fast Bit-Parallel GF (2n) Multiplier for All Trinomials. IEEE
Transactions on Computers 54(4), 485–490 (2005)

16. Park, S., Chang, K.: Low Complexity Bit-Parallel Squarer for GF (2n) Defined
by Irreducible Trinomials. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 89, 2451–2452 (2006)

17. Fan, H., Hasan, M.: A New Approach to Subquadratic Space Complexity Parallel
Multipliers for Extended Binary Fields. IEEE Transactions on Computers 56(2),
224–233 (2007)

18. Park, S., Chang, K., Hong, D.: Efficient Bit-Parallel Multiplier for Irreducible
Pentanomials Using a Shifted Polynomial Basis. IEEE Transactions on Comput-
ers 55(9), 1211–1215 (2006)

19. Negre, C.: Efficient Parallel Multiplier in Shifted Polynomial Basis. Journal of
Systems Architecture 53(2-3), 109–116 (2007)

20. Sakiyama, K., Batina, L., Mentens, N., Preneel, B., Verbauwhede, I.: Small-
Footprint ALU for Public-Key Processors for Pervasive Security. In: Workshop
on RFID Security, pp. 77–88 (2006)

21. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, New York (1986)

22. Kaihara, M.E., Takagi, N.: Bipartite Modular Multiplication Method. IEEE Trans-
actions on Computers 57(2), 157–164 (2008)

23. Recommended Elliptic Curves for Federal Government Use,
csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf

Some Theorems on Planar Mappings

Gohar M. Kyureghyan and Alexander Pott

Department of Mathematics, Otto-von-Guericke University of Magdeburg,
Universitätplatz 2, 39106 Magdeburg, Germany
{gohar.kyureghyan,alexander.pott}@ovgu.de

Abstract. A mapping f : Fn
p → Fn

p is called planar if for every nonzero
a ∈ Fn

p the difference mapping Df,a : x �→ f(x + a) − f(x) is a per-
mutation of Fn

p . In this note we prove that two planar functions are
CCZ-equivalent exactly when they are EA-equivalent. We give a sharp
lower bound on the size of the image set of a planar function. Further
we observe that all currently known main examples of planar functions
have image sets of that minimal size.

Keywords: Planar mapping, Perfect nonlinear mapping, CCZ-
equivalence, Image set.

1 Introduction

Let p be an odd prime. Given a mapping f : Fn
p → Fn

p and a nonzero element
a ∈ Fn

p , we call the mapping

Df,a : Fn
p → Fn

p , x �→ f(x + a)− f(x)

the difference mapping of f defined by a. A mapping f : Fn
p → Fn

p is called planar
if all its difference mappings are bijective. Planar mappings were introduced in
[6] to describe projective planes with certain properties.

Two mappings f, g : Fn
p → Fn

p are called extended affine equivalent (EA-
equivalent), if g = A1 ◦ f ◦ A2 + A for some affine permutations A1, A2 and an
affine mapping A. It is easy to see that if f is a planar mapping then all functions
EA-equivalent to it are planar as well.

Currently known EA-inequivalent planar polynomials over finite fields are:

(a) x2 in Fpn (folklore)
(b) xpk+1 in Fpn , k ≤ n/2 and n/(k, n) is odd ([6],[5])
(c) x10 + x6 − x2 in F3n , n ≥ 5 is odd ([5])
(d) x10 − x6 − x2 in F3n , n ≥ 5 is odd ([9], [3])
(e) xps+1 − upk−1xpk+p2k+s

in Fp3k , where (k, 3) = 1, k − s ≡ 0 (mod 3) and
k/(k, s) is odd, and u is a primitive element of Fp3k ([14])

(f) x(3k+1)/2 in F3n , k ≥ 3 is odd and (k, n) = 1 ([5],[10]).

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 117–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

118 G.M. Kyureghyan and A. Pott

Note that the polynomials in (a)-(e) are of shape

n−1∑
i,j=0

ai,jx
pi+pj

, ai,j ∈ Fpn .

The polynomials of this type are called Dembowski-Ostrom polynomials. In [3]
it is proved that the classification of planar Dembowski-Ostrom polynomials is
equivalent to the classification of finite commutative semifields of odd order. A
planar mapping of Fn

p with the image set of size (pn + 1)/2 yields either a skew
Hadamard difference set or a Paley type partial difference set depending on pn

(mod 4) as shown in [9],[13]. Planar mappings are used to construct optimal
constant-composition codes and signal sets in [8],[7].

2 EA- and CCZ-Equivalence

If h : Fn
2 → Fn

2 then the image set of a difference mapping Dh,a has at most
2n−1 elements. Indeed, note that Dh,a(x) = Dh,a(x + a) for any x ∈ Fn

2 . A
mapping h : Fn

2 → Fn
2 is called almost perfect nonlinear (APN) if the image

set of every difference mapping Dh,a is of maximal size 2n−1. APN mappings
are of interest in cryptology since they provide the optimal resistance against
differential attacks. It is easy to see that the APN property is invariant under
EA-equivalence. In [2] an extension of EA-equivalence was introduced:

Two mappings f, g : Fn
p → Fn

p are called Carlet-Charpin-Zinoviev equivalent

(CCZ-equivalent) if the set
{(

x
g(x)

)
| x ∈ Fn

p

}
⊂ F2n

p is the image of the set{(
x

f(x)

)
| x ∈ Fn

p

}
⊂ F2n

p under an affine permutation of F2n
p . In other words,

two mappings of Fn
p are CCZ-equivalent if their graphs are affine equivalent in

F2n
p .
In [2] it is shown that CCZ-equivalent mappings have the same differential

properties and that EA-equivalence is a special case of CCZ-equivalence. In [1] it
is shown that CCZ-equivalence does not coincide with EA-equivalence for APN
mappings. The authors of this note have been asked frequently whether CCZ-
equivalence allows to construct EA-inequivalent mappings from a known planar
mapping. The answer is negative as it is shown below using arguments from [1].

Given a mapping f : Fn
p → Fn

p and a subset S ⊆ Fn
p , we denote by f(S) the

image set of S.

Lemma 1. Let f, g : Fn
p → Fn

p be planar mappings. Set

F =
{(

x
f(x)

)
| x ∈ Fn

p

}
, G =

{(
x

g(x)

)
| x ∈ Fn

p

}
and

O =
{(

0
y

)
| y ∈ Fn

p

}
.

If L : F2n
p → F2n

p is a linear permutation satisfying L(F) = G then L(O) = O.

Some Theorems on Planar Mappings 119

Proof. Let a be a fixed nonzero element of Fn
p . Then for any b ∈ Fn

p there is
x ∈ Fn

p such that b = f(x + a)− f(x). Thus it holds

L
(

a
b

)
= L

(
x + a− x

f(x + a)− f(x)

)
= L

(
x + a

f(x + a)

)
− L

(
x

f(x)

)
=

(
y

g(y)

)
−

(
y′

g(y′)

)
/∈ O,

where we used that y �= y′ since L
(

x + a
f(x + a)

)
�= L

(
x

f(x)

)
. The assumption

that L is bijective implies the statement.

Theorem 1. Let f, g : Fn
p → Fn

p be planar mappings. If f and g are CCZ-
equivalent then they are EA-equivalent.

Proof. Let A : F2n
p → F2n

p be an affine mapping which maps the graph of f onto

the graph of g. Then A
(

x
y

)
= L

(
x
y

)
+

(
c1

c2

)
, where L : F2n

p → F2n
p is linear

and
(

c1

c2

)
is a fixed element of F2n

p . Note that

L
(

x
f(x)

)
=

(
y − c1

g(y)− c2

)
=

(
y′

g(y′ + c1)− c2

)
.

Thus L maps the graph of f onto the graph of g(y′ + c1) − c2 which is EA-
equivalent to g and hence is planar. Let a matrix representation of L be given
by (

L1 L2

L3 L4

)
,

where Li is an n× n matrix over Fp. Then by Lemma 1 the matrix L2 must be
the zero matrix. Hence

A
(

x
f(x)

)
=

(
L1 0
L3 L4

)(
x

f(x)

)
+

(
c1

c2

)
=

(
L1(x) + c1

L3(x) + L4(f(x)) + c2

)
=

(
y

g(y)

)
.

This shows that g(L1(x) + c1) = L3(x) + L4(f(x)) + c2 with L1 and L4 of full
rank, completing the proof.

3 On the Image Set of a Planar Mapping

Let p be an odd prime. Given a set S ⊆ Fn
p and a ∈ Fn

p , we denote by f−1(S)
the preimage of S and by w(a) the size of f−1({a}). A mapping f : Fn

p → Fn
p

is called 2-to-1 if there is a unique a0 with w(a0) = 1 and w(a) ∈ {0, 2} for the
remaining a.

In this section we observe that results and techniques from [13] imply that all
currently known planar mappings are 2-to-1 up to addition of a linear mapping.

120 G.M. Kyureghyan and A. Pott

Lemma 2 ([13]). Let f : Fn
p → Fn

p be a planar mapping. Then∑
x∈Fn

p

w(x + b)w(x) =
{

pn − 1 if b �= 0
2pn − 1 if b = 0.

Proof. The following is a slightly simplified version of the proof from [13]. Note
that ∑

x∈Fn
p

w(x + b)w(x) =
∑
x∈Fn

p

|{(u, v) ∈ Fn
p × Fn

p | f(u) = x + b, f(v) = x}|

= |{(u, v) ∈ Fn
p × Fn

p | f(u)− f(v) = b}|
= |{(a, v) ∈ Fn

p × Fn
p | f(v + a)− f(v) = b}|.

Then the statement follows from the observation that for any fixed a �= 0 there
is exactly one v ∈ Fn

p satisfying f(v + a)− f(v) = b. If b = 0, then (0, v), v ∈ Fn
p ,

satisfy the equation as well.

The next result extends Lemma 2.3 from [13].

Theorem 2. Let f : Fn
p → Fn

p be a planar mapping and I be its image set. Then

|I| ≥ pn + 1
2

.

Moreover, |I| = pn+1
2 if and only if f is 2-to-1.

Proof. By Lemma 2 ∑
y∈Fn

p

w2(y) =
∑
y∈I

w2(y) = 2pn − 1. (1)

Obviously it holds also ∑
y∈I

w(y) = pn. (2)

Then (1) and (2) imply

0 ≤
∑
y∈I

(w(y) − 2)2 = 2pn − 1− 4pn + 4|I| = 4|I| − 2pn − 1, (3)

and thus

|I| ≥
⌈

2pn − 1
4

⌉
=

pn + 1
2

,

proving the first statement. Suppose now that |I| = pn+1
2 . Then (3) is reduced

to ∑
y∈I

(w(y) − 2)2 = 4|I| − 2pn − 1 = 4
pn + 1

2
− 2pn − 1 = 1.

The equality
∑

y∈I(w(y) − 2)2 = 1 is possible if and only if there is a unique
y0 ∈ I with (w(y0)− 2)2 = 1 and (w(y) − 2)2 = 0 (and hence w(y) = 2) for the
remaining elements of I. Then from (2) it follows that w(y0) = 1, proving the
second part of the statement.

Some Theorems on Planar Mappings 121

Corollary 1. Let f(x) =
∑pn−1

i=0 aix
i, ai ∈ Fpn , be a planar polynomial. Sup-

pose ai = 0 for all odd i. Then f is 2-to-1 with f−1({0}) = {0}. In particular,
all Dembowski-Ostrom planar polynomials are 2-to-1.

Proof. Note that for such a polynomial it holds f(x) = f(−x) for any x ∈ Fpn .
Thus the image set of it contains at most (pn + 1)/2 elements. The rest follows
from Theorem 2.

Corollary 1 covers all known examples of planar mappings listed in the intro-
duction. A natural question arises: Is any planar mapping 2-to-1? The answer
is negative as the following observation shows. Given a planar mapping f in
Fn

p , n > 2, we may choose a linear mapping l such that the planar mapping
f + l has more than two zeros. However it might be the case that for any planar
mapping f there is a linear mapping l such that f + l is 2-to-1.

In the next proposition we describe a family of planar polynomials which are
not 2-to-1. Firstly we recall Wan’s upper bound on the image set of polynomials
over finite fields. Let g be a polynomial of degree d over a finite field F, which
is not a permutation polynomial. Then Wan’s bound asserts that |g(F)| ≤ |F| −
(|F| − 1)/d, see [12],[11].

Proposition 1. Let 0 < s < n and u be a (ps − 2)th-power in Fpn . Then the
planar mapping f(x) = xps − ux2 is not 2-to-1 in Fpn .

Proof. The mapping f is EA-equivalent to x2 and hence is planar. We will show
that there are at least 2 elements b ∈ Fpn , satisfying f(x) = f(b) if and only if
x = b. Consider f(x + b) = f(b), which is equivalent to

(x + b)ps − u(x + b)2 − bps

+ ub2 = xps − 2ubx− ux2 = 0

and thus for x �= 0
xps−1 − ux = 2ub. (4)

Note that the mapping g(x) = xps−1 − ux = x(xps−2 − u) is not a permutation
of Fpn since g(x) = 0 has two solutions. Then using Wan’s bound, we get

|g(Fpn)| ≤ pn − pn − 1
ps − 1

.

Hence there are at least two elements b ∈ Fpn for which (4) has no solution. For
such a b it holds f(b) �= f(x + b) for any x �= 0.

References

1. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Trans. Inform. Theory 52, 1141–1152 (2006)

2. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)

3. Coulter, R.S., Henderson, M.: Commutative presemifields and semifields. Adv.
Math. 217, 282–304 (2008)

122 G.M. Kyureghyan and A. Pott

4. Coulter, R.S., Henderson, M., Kosick, P.: Planar polynomials for commutative
semifields with specified nuclei. Des. Codes Cryptogr. 44, 275–286 (2007)

5. Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class
II. Des. Codes Cryptogr. 10, 167–184 (1997)

6. Dembowski, P., Ostrom, T.: Planes of order n with collineation groups of order n2.
Math. Z. 103, 239–258 (1968)

7. Ding, C., Yin, J.: Signal sets from functions with optimum nonlinearity. IEEE
Trans. Communications 55, 936–940 (2007)

8. Ding, C., Yuan, J.: A family of optimal constant-composition codes. IEEE Trans.
Inform. Theory 51, 3668–3671 (2005)

9. Ding, C., Yuan, J.: A new family of skew Paley-Hadamard difference sets. J. Comb.
Theory Ser. A 113, 1526–1535 (2006)

10. Helleseth, T., Sandberg, D.: Some power mappings with low differential uniformity.
Applicable Algebra in Engineering, Communications and Computing 8, 363–370
(1997)

11. Turnwald, G.: A new criterion for permutation polynomials. Finite Fields and
Appl. 1, 64–82 (1995)

12. Wan, D.: A p-adic lifting lemma and its applications to permutation polynomials.
Finite Fields, Coding Theory and Advances in Comm. and Computing, Lect. Notes
in Pure and Appl. Math. 141, 209–216 (1993)

13. Weng, G., Qiu, W., Wang, Z., Xiang, Q.: Pseudo-Paley graphs and skew Hadamard
sets from presemifields. Des. Codes Cryptogr. 44, 49–62 (2007)

14. Zha, Z., Kyureghyan, G., Wang, X.: A new family of perfect nonlinear binomials
(submitted, 2008)

Classifying 8-Bit to 8-Bit S-Boxes Based on

Power Mappings from the Point of DDT and
LAT Distributions

Bora Aslan, M. Tolga Sakalli, and Ercan Bulus

Kirklareli University, Computer Tech. and Programming Dept.,
Luleburgaz-Kirklareli, Turkey

Trakya University, Computer Engineering Dept., Edirne, Turkey
Namik Kemal University, Computer Engineering Dept., Corlu-Tekirdag, Turkey

{boraaslan,tolga}@trakya.edu.tr, ercanbulus@corlu.edu.tr

Abstract. S-boxes are vital elements in the design of symmetric ci-
phers. To date, the techniques for the construction of S-boxes have in-
cluded pseudo-random generation, finite field inversion, power mappings
and heuristic techniques. From these techniques, the use of finite field in-
version in the construction of an S-box is so popular because it presents
good cryptographic properties. On the other hand, while S-boxes such as
AES, Shark, Square and Hierocrypt that are based on inversion mapping
over GF (2n) use an affine transformation after the output of the S-box,
in some ciphers like Camellia, an additional affine transformation is used
before the input. In this paper, we classify 8-bit to 8-bit S-boxes based on
power mappings into classes according to DDT and LAT distributions.
Moreover, a formula is given for the calculation of the number of terms
in the algebraic expression for a power mapping based S-box according
to the given three probable cases.

Keywords: S-boxes, Power Mappings, Classification, DDT, LAT.

1 Introduction

S-boxes are the most important and the only nonlinear component of a block ci-
pher since diffusion and confusion properties which are related with the security
of cryptographic algorithms are added to a block cipher by S-boxes. So, bijective
S-boxes play an important role in the design of symmetric ciphers. To date, the
techniques for the construction of S-boxes have included pseudo-random genera-
tion, finite field inversion, power mappings and heuristic techniques. From these
techniques, the use of finite field operation in the construction of an S-box yields
linear approximation and difference distribution tables in which the entries are
close to uniform. Therefore, this provides security against differential and linear
attacks. Moreover, because of the fact that S-boxes generated using finite field
inversion give good results from the point of cryptographic properties which are
LAT (Linear Approximation Table), DDT (Difference Distribution Table - also
called XOR Table), completeness, avalanche, strict avalanche, bit independence,

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 123–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

124 B. Aslan, M.T. Sakalli, and E. Bulus

these algebraic S-boxes like the AES (Advenced Encryption Standard) S-box [1]
have received significant attention from cryptographers.

An n × n S-box, S(x) : GF (2n) → GF (2n), maps an n-bit input to an n-bit
output and can be viewed as consisting of n Boolean functions. This type of
S-boxes, one of which is the AES S-box and maps an 8-bit input to an 8-bit
output, has been used in most ciphers in the literature.

On the other hand, the Misty 1 [2] and Kasumi [3] which are power mapping
based S-boxes can be given as examples of a 7-bit input to a 7-bit output S-
boxes and a 9-bit input to a 9-bit output S-boxes respectively. These S-boxes
are obtained as linear transforms of power functions over the corresponding
fields, with the Kasami’s exponent [4]. The Misty 1 S-box and Kasami S-box are
obtained x→ x81 in GF (27), x→ x5 in GF (29) respectively.

The AES S-box was chosen in terms of Nyberg’s suggestion [5] and is based
on the inversion mapping over GF (2n) (with n = 8).

f(x) = x−1, x ∈ GF (28), f(0) = 0 (1)

As shown in Equation (1), this mapping has a simple algebraic expression
that may enable some attacks such as the interpolation attacks [6] [7]. Also,
in [6], it is stated that the complexity of such cryptanalytic attacks depends
on the degree of the polynomial approximation or the number of terms in the
polynomial approximation expression. In order to overcome this problem, this
mapping was modified in such a way that does not modify its resistance towards
both linear and differential cryptanalysis while overall S-box description becomes
complex in GF (28). This was achieved by adding a bitwise affine transformation
after the inversion mapping [6] [8].

On the other hand, in some ciphers like Camellia [9], an additional affine
transformation is used before the input. Therefore, we can define three different
probable cases for the place an affine transformation is added. These are:

– case 1 (to add a bitwise affine transformation after the output of an S-box),
– case 2 (to add a bitwise affine transformation before the input of an S-box),
– case 3 (to add a bitwise affine transformation both after the output of an

S-box and before the input of an S-box).

A map f(x) from the finite field GF (pn) to itself is said to be differentially
k uniform if k is the maximum number of solutions of the equation f(x + a)−
f(x) = b where a, b ∈ GF (pn), a �= 0. With p = 2, this concept is of interest
in cryptography since differential [10] and linear [11] attacks are related to the
uniformity of the functions from the point of DDT and LAT. Moreover, while
maximum value of b in the equation f(x+a)+f(x) = b (for p = 2) where a �= 0,
b ∈ GF (2n), gives the efficiency of differential cryptanalysis, the maximum LAT
value is related to the nonlinearity of the functions. The lower of these two values
are, the more resistant function f will be to differential cryptanalysis and linear
cryptanalysis. In cryptography, differentially 2 uniform maps are referred to as
almost perfect nonlinear maps. Some studies on APN mappings can be found in

Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings 125

Table 1. Known APN functions xd on GF (2n), n = 2m + 1

Name Exponent d ref.

Gold’s functions 2i + 1 with (i, n) = 1, 1 ≤ i ≤ m [13],[12]

Kasami’s functions 22i − 2i + 1 with (i, n) = 1, 2 ≤ i ≤ m [14]

Field inverse 2n − 2 [5]

Welch’s function 2m + 3 [15],[16]

Niho’s function 2m + 2m/2 − 1(even m) 2m + 2(3m+1)/2 − 1(odd m) [16]

Dobbertin’s function 24i + 23i + 22i + 2i − 1 if n = 5i [17]

Table 2. Known APN functions xd on GF (2n), n = 2m

Name Exponent d ref.

Gold’s functions 2i + 1 with (i, n) = 1, 1 ≤ i ≤ m [13]

Kasami’s functions 22i − 2i + 1 with (i, n) = 1, 2 ≤ i ≤ m [14]

Dobbertin’s function 24i + 23i + 22i + 2i − 1 if n = 5i [17]

[12][13][14][15][16][17] and according to these studies known APN functions are
given in Table 1 and Table 2.

As mentioned before, the AES S-box is based on inversion mapping over
GF (28) and was chosen in terms of Nyberg suggestion. In fact, inversion mapping
over GF (2n) is a differentially 4 uniform and has the best known nonlinearity
[18], that is 2n−1 − 2n/2 [19]. The designers of AES have chosen an S-box which
is bijective S-box and fits the byte structure of the cipher. This is because there
is no bijective and APN mapping in GF (28). So, this encouraged us to focus on
other functions with low uniformity from the point of DDT and LAT.

On the other hand, If x → x127 power mapping has been used instead of
inversion mapping over GF (28), then the algebraic expression of the AES S-box
would be

S(x) = '63'+ '09'x254 + 'f9'x253 + '25'x251 + 'f4'x247 +
'01'x239 + 'b5'x223 + '8f'x191 + '05'x127 (2)

while the algebraic expression of the AES S-box is

S(x) = '63'+ '05'x254 + '09'x253 + 'f9'x251 + '25'x247 +
'f4'x239 + '01'x223 + 'b5'x191 + '8f'x127. (3)

Note that in Equation (2) and (3) the hexadecimal values in the vertical quote
marks represent the field elements in GF (28).

The similarity between Equation (2) and (3) encouraged us to classify power
functions in GF (28) according to the LAT and DDT distributions and have given
a clue about classifying power functions according to the degree and number of

126 B. Aslan, M.T. Sakalli, and E. Bulus

terms in the algebraic expression. In this paper, we classify power functions in
GF (28) according to the LAT and DDT distributions. In fact, our study improves
findings of Maxwell [20] for GF (28).

2 Mathematical Background and Definitions

In this section, we present some basic definitions, propositions, theorems required
to classify power functions over GF (28).

Definition 1. Let S : GF (2n) → GF (2n) be an S-box having an n-bit input
and an n-bit output. For any given a, b ∈ GF (2n), the XOR table (DDT) can be
constructed using

XOR(a, b) = |{x ∈ GF (2n) : S(x) + S(x + a) = b}| (4)

where a, b are called the input difference and output difference respectively. Also,
∇f = max {XOR(a, b) : a, b ∈ GF (2n), a �= 0} is called differential uniformity
and we say that an S-box is nonlinear if ∇f smaller than 2n. Moreover, XOR
table of an S-box gives information about the security of the block cipher against
differential cryptanalysis. If the differential uniformity is large, this is an indi-
cation of an insecure block cipher [21].

Definition 2. Let S : GF (2n)→ GF (2n) be an S-box having an n-bit input and
an n-bit output. For any given Γa, Γb ∈ GF (2n), the LAT can be constructed
using

LAT (Γa, Γb) = |{x ∈ GF (2n) : Γa • x = Γb • S(x)}| − 2n−1 (5)

where x• y denotes the parity (0 or 1) of bitwise product of x and y. Also, Γa, Γb

are called input mask and output mask respectively. LAT is important tool to
measure the security of the S-boxes against linear cryptanalysis. Large elements
of LAT are not desired since they indicate high probability of linear relations
between the input and output.

Definition 3. Nonlinearity measure of an n×n S-box related with the maximum
entry of LAT value can be given as

NLMS = 2n−1 −max |LATS(Γa, Γb)| (6)

Definition 4. Let f(x) = xd be a function. If ∇f = 2 for this function, then
this function is called APN function.

Definition 5. We say that two functions f and g are equivalent if the lists of
values XOR(a, b) of these functions with a, b ∈ GF (pn) are equal [20].

Definition 6. A cyclotomic coset mod N that contains an integer s is the set

Cs = {s, sq, . . ., sqm−1}(mod N) (7)

where m is the smallest positive integer such that sqm ≡ s (mod N).

Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings 127

Theorem 1. XOR(a, b), where f(x) = xd, is constant on the cyclotomic coset
[20].

Proposition 1. Inversionmapping, f(x) = x2n−2 withx ∈ GF (2n) overGF (2n)
for n even is differentially 4 uniform [5].

Proposition 2. f(x) = xd with x ∈ GF (2n) over GF (2n) for n even, where
d = 2n − 2i − 1 for i = 1, 2, .., n− 1, is differentially 4 uniform.

Proof. Since d = x2n−2 with x ∈ GF (2n) for inversion mapping over GF (2n), the
function (x)(2

n−2).2imod(2n−1), according to the Proposition 1 and Theorem 1, is
differentially 4 uniform. Therefore,

(x)(2
n−2).2imod(2n−1) = (x)(2

n−1−1).2imod(2n−1)

= (x)(−2i)mod(2n−1) (8)

means that f(x) = xd with x ∈ GF (2n) where d = 2n−2i−1 for i = 1, 2, . . . , n−1
is differentially 4 uniform.

XOR table and LAT is a table of size 28 × 28 for 8 × 8 S-boxes whose
elements are calculated by (4) and (5) respectively. For the power functions
GF (28) → GF (28), if a �= 0 ∈ GF (28) is fixed, and b varies over GF (28), then
the distribution of XOR(a, b) values is independent of a. Therefore, instead of
examining of XOR table size 28 × 28, we can examine table size 1× 28 and give
the distributions of one row of XOR table. Similarly, we can examine one row of
LAT table where Γa �= 0 ∈ GF (2n) is fixed and Γb varies over GF (28) and give
the number of absolute values of LAT elements.

Since all finite fields can be constructed by any irreducible polynomial, we can
select any irreducible polynomial to construct the finite field GF (28). Hence, as
stated in Proposition 1, inversion mapping over GF (28) is differentially 4 uniform
(the number of 4’s, 2’s and 0’s are 1, 126 and 129 respectively). Moreover, using
Proposition 2, we can say that x → x127, x → x191, x → x223, x → x239, x →
x247, x → x251, x → x253 power mappings will give the same distributions for
DDT as in inversion mapping over GF (28).

As mentioned before, since the design of an S-box is generally related with
adding affine transformations according to the three probable cases and these
transformations are over GF (2), they do not modify cryptographic properties of
an S-box but they improve algebraic expression of an S-box. Therefore, we can
see power mappings, whether bijective or not, as S-boxes.

3 Classification of Power Functions in GF (28)

Since all finite fields of the same size are isomorphic, the choice of irreducible
polynomial does not make any difference in the construction of the finite field
GF (28). Therefore, the finite field GF (28) has been constructed by using the

128 B. Aslan, M.T. Sakalli, and E. Bulus

same irreducible polynomial as in the AES specifications, namely p(x) = x8 +
+x4 + x3 + x + 1.

Let β = 1 + α, where α is a root of p(x). Then, we can determine all powers
of β (β is a primitive element for this case)

β1 = '03', β2 = '05', . . ., β254 = 'F6', β255 = '01'.

Table 3. Classification of power functions according to the maximum DDT and the
maximum absolute LAT values

Class(d) Elements of Classes ∇S |NLmax| Nonlinearity
Measure of S-boxes
(NLMs%)

3 (3 6 12 24 48 96 192 129) 2 16 112 (93%)

9 (9 18 36 72 144 33 66 132) 2 16 112 (93%)

39 (39 78 156 57 114 228 201 147) 2 16 112 (93%)

5 (5 10 20 40 80 160 65 130) 4 32 96 (80%)

21 (21 42 84 168 81 162 69 138) 4 16 112 (93%)

95 (95 190 125 150 245 235 215 175) 4 16 112 (93%)

111 (111 222 189 123 246 237 219 183) 4 16 112 (93%)

127 (127 254 253 251 247 239 223 191) 4 16 112 (93%)

7 (7 14 28 56 112 224 193 131) 6 32 96 (80%)

25 (25 50 100 200 145 35 70 140) 6 32 96 (80%)

37 (37 74 148 41 82 164 73 146) 6 32 96 (80%)

63 (63 126 252 249 243 231 207 159) 6 24 104 (87%)

11 (11 22 44 88 176 97 194 133) 10 32 96 (80%)

29 (29 58 116 232 209 163 71 142) 10 32 96 (80%)

13 (13 26 52 104 208 161 67 134) 12 32 96 (80%)

55 (55 110 220 185 115 230 205 155) 12 32 96 (80%)

59 (59 118 236 217 179 103 206 157) 12 32 96 (80%)

15 (15 30 60 120 240 225 195 135) 14 12 116 (97%)

45 (45 90 180 105 210 165 75 150) 14 12 116 (97%)

17 (17 34 68 136) 16 8 120 (100%)

19 (19 38 76 152 49 98 196 137) 16 24 104 (87%)

23 (23 46 92 184 113 226 197 139) 16 32 96 (80%)

31 (31 62 124 248 241 227 199 143) 16 16 112 (93%)

47 (47 94 188 121 242 229 203 151) 16 24 104 (87%)

53 (53 106 212 169 83 166 77 154) 16 32 96 (80%)

61 (61 122 244 233 211 167 79 158) 16 32 96 (80%)

91 (91 182 109 218 181 107 214 173) 16 16 112 (93%)

119 (119 238 221 187) 22 16 112 (93%)

27 (27 54 108 216 177 99 198 141) 26 48 80 (67%)

43 (43 86 172 89 178 101 202 149) 30 48 80 (67%)

87 (87 174 93 186 117 234 213 171) 30 48 80 (67%)

51 (51 102 204 153) 50 12 116 (97%)

85 (85 170) 84 10 118 (98%)

1 (1 2 4 8 16 32 64 128) 256 128 0 (0%)

Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings 129

Table 4. The distribution of the number of probable DDT values for one row

d The number of x’s
(class) 0 2 4 6 10 12 14 16 18 22 24 26 28 30 50 52 60 84 256

3 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 128 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 192 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 152 80 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

95 156 72 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

111 140 104 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

127 129 126 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 157 84 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 172 48 28 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37 157 84 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 156 86 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 165 66 21 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 165 66 21 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 149 102 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

55 152 96 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

59 149 102 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

15 134 121 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

45 134 121 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

17 240 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0

19 159 72 24 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

23 165 60 30 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

31 135 120 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

47 159 72 24 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

53 155 96 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0

61 165 60 30 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

91 135 120 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

119 240 0 1 0 2 0 0 9 0 4 0 0 0 0 0 0 0 0 0

27 192 43 0 16 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0

43 185 60 0 8 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0

87 168 85 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0

51 244 1 0 0 0 0 0 0 6 0 4 0 0 0 1 0 0 0 0

85 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0

1 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Using powers of β, firstly, we have obtained S-boxes according to the power func-
tions, and secondly, obtained DDT and LAT distributions using the definitions
in Section 2. In Table 3, the results for ∇S and maximum absolute value of LAT
elements, also denoted as |NLmax| value, for all classes are shown.

For an n × n S-box, the maximum nonlinearity measure can be given as
2n − 2n/2−1. Therefore, the proportion of nonlinearity measure of an S-box to
the maximum nonlinearity measure gives the percentage value of nonlinearity

130 B. Aslan, M.T. Sakalli, and E. Bulus

Table 5. The distribution of the number of probable absolute LAT values for one row

d The number of |x|’s
(class) |0| |2| |4| |6| |8| |10| |12| |14| |16| |20| |24| |32| |40| |48| |128|

3 65 0 0 0 170 0 0 0 21 0 0 0 0 0 0

9 65 0 0 0 170 0 0 0 21 0 0 0 0 0 0

39 65 0 0 0 170 0 0 0 21 0 0 0 0 0 0

5 49 0 0 0 204 0 0 0 0 0 0 3 0 0 0

21 113 0 0 0 106 0 0 0 37 0 0 0 0 0 0

95 62 0 96 0 36 0 32 0 30 0 0 0 0 0 0

111 49 0 88 0 58 0 40 0 21 0 0 0 0 0 0

127 17 48 36 40 34 24 36 16 5 0 0 0 0 0 0

7 105 0 0 0 120 0 0 0 30 0 0 1 0 0 0

25 115 0 0 0 108 0 0 0 32 0 0 1 0 0 0

37 105 0 0 0 120 0 0 0 30 0 0 1 0 0 0

63 41 0 104 0 72 0 16 0 13 8 2 0 0 0 0

11 101 0 0 0 132 0 0 0 18 0 4 1 0 0 0

29 165 66 21 0 0 4 0 0 0 0 0 0 0 0 0

13 101 0 0 0 132 0 0 0 18 0 4 1 0 0 0

55 99 0 0 0 136 0 0 0 16 0 4 1 0 0 0

59 101 0 0 0 132 0 0 0 18 0 4 1 0 0 0

15 1 0 24 84 85 52 10 0 0 0 0 0 0 0 0

45 1 0 24 84 85 52 10 0 0 0 0 0 0 0 0

17 16 0 0 0 240 0 0 0 0 0 0 0 0 0 0

19 88 0 0 0 152 0 0 0 8 0 8 0 0 0 0

23 90 0 0 0 144 0 0 0 20 0 0 2 0 0 0

31 120 0 0 0 96 0 0 0 40 0 0 0 0 0 0

47 88 0 0 0 152 0 0 0 8 0 8 0 0 0 0

53 60 0 0 0 192 0 0 0 0 0 0 4 0 0 0

61 90 0 0 0 144 0 0 0 20 0 0 2 0 0 0

91 120 0 0 0 96 0 0 0 40 0 0 0 0 0 0

119 16 0 128 0 80 0 0 0 32 0 0 0 0 0 0

27 117 0 0 0 118 0 0 0 16 0 4 0 0 1 0

43 109 0 0 0 136 0 0 0 8 0 0 1 0 2 0

87 109 0 0 0 136 0 0 0 8 0 0 0 2 1 0

51 16 0 64 96 0 64 16 0 0 0 0 0 0 0 0

85 64 0 0 128 0 64 0 0 0 0 0 0 0 0 0

1 255 0 0 0 0 0 0 0 0 0 0 0 0 0 1

measure of an S-box. Also, Table 3 gives nonlinearity measure of S-boxes based
on power mappings with the percentage values.

According to Table 3, the classes 3, 9, 39, 5, 21, 95, 111, 25, 63, 55, 15, 45,
27, 85 are not bijective (gcd(d, 28 − 1) �= 1) and the classes 3, 9, 39 are APN
functions. Although, the classes 5, 21, 95, 111, 127 are differentially 4 uniform,
only the class 127 can be used in the design of bijective S-box applications. In
addition, the classes 7, 25, 37, 63 are differentially 6 uniform and the classes 7
and 37 give the same DDT distributions where the number of 6’s, 4’s, 2’s, 0’s

Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings 131

are 14, 1, 84, 157 respectively. For the class 25, the number of 6’s, 4’s, 2’s, 0’s
are 8, 24, 48, 172 respectively while the number of 6’s, 2’s, 0’s are 14, 86, 156
respectively in the class 63. Detailed description of power functions according to
the one row distribution of DDT can found in Table 4.

On the other hand, from the point of LAT distributions, we can say that the
classes 3, 9, 39 give the same distribution (the number of 0’s, |8|’s, |16|’s are
65,170, 21 respectively). The classes 7 and 37 give the same distribution where
the number of 0’s, |8|’s, |16|’s and |32|’s are 105, 120, 30, 1 respectively and the
number of 0’s, |2|’s, |4|’s, |6|’s, |8|’s, |10|’s, |12|’s, |14|’s, |16|’s are 17, 48, 36, 40,
34, 24, 36, 16, 5 respectively in the class 127. One element of this class, that is
254, is used in the AES S-box design.

If we evaluate the nonlinearity measure of S-boxes based on power mappings
over GF (28) then, we can say that all APN mappings have the nonlinearity
measure 112. That means these S-boxes are 93% nonlinear. Moreover, the AES
S-box, which is based on the class 127, has also the nonlinearity 112. Generally,
there is a parallel relation between the maximum differential value and maximum
LAT value for bijective S-boxes. The lower the maximum differential value, the
lower the LAT value an S-box has. But, we cannot talk about this relation for
non-bijective S-boxes based on power mappings like the class 17 which is not
bijective has the maximum nonlinearity with ∇S = 16. Detailed description of
power functions according to the one row distribution of LAT can be found in
Table 5.

4 Conclusions

In this paper, we classified 8 × 8 S-boxes based on power mappings according
to the DDT and LAT distributions. For bijective S-boxes based on power map-
pings, although there are some exceptions, there is a parellel relation between
the maximum value of XOR table and maximum absolute value of LAT.

Another important observation is that all elements of a class have the same
Hamming weight. Therefore, if any element of a class is used in S-box design,
then algebraic weight of this element or this class will affect the number of
terms in the algebraic expression according to the cases used in S-box design.
For example, if the class 127 is used in the S-box design according to the case
1, 2 and 3, then the number of terms in the algebraic expression will be 9, 255,
and 255 respectively with algebraic degree invariable. On the other hand, if the
class 7 is used in the S-box design according to the case 1, 2 and 3, then the
number of terms in the algebraic expression of these S-boxes will be 9, 93, and 93
respectively. Moreover, the algebraic degree in the algebraic expression of these
S-boxes will be 224. A formula for the calculation of the number of terms in the
algebraic expression for an S-box designed by using case 2 and 3 can be given as

1 + C(n, 1) + C(n, 2) + . . . + C(n, r)

where r is the Hamming weight of the power function. In addition, the algebraic
degree in the algebraic expression of the S-box will be the biggest value among
the used class elements.

132 B. Aslan, M.T. Sakalli, and E. Bulus

If case 1 is concerned in the design of an S-box, then all elements of the class
used in the S-box design will appear in the algebraic expression and algebraic
degree will be the biggest value among the used class elements. So, an improve-
ment of the AES S-box may be considered from the point of the number of terms
in the algebraic expression by using case 2 or case 3.

Acknowledgments. The authors would like to thank the anonymous referees
for their valuable comments.

References

1. Kavut, S., Yucel, M.D.: On Some Cryptographic Properties of Rijndael. In:
Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS,
vol. 2052, pp. 300–311. Springer, Heidelberg (2001)

2. Matsui, M.: New Block Encryption MISTY. In: Biham, E. (ed.) FSE 1997. LNCS,
vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

3. 3rd Generation Partnership Project, Technical Specification Group Services and
System Aspects, 3G Security, Specification of the 3GPP Confidentiality and In-
tegrity Algorithms; Document 2: Kasumi Specification, V.3.1.1 (2001)

4. Dobbertin, H.: Almost perfect nonlinear power functions on GF (2n): the Welch
case. IEEE Transactions on Information Theory 45, 1271–1275 (1999)

5. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

6. Jakobsen, T., Knudsen, L.: The interpolation attack on block ciphers. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997)

7. Youssef, A.M., Tavares, S.E., Gong, G.: On Some probabilistic approximations for
AES-like s-boxes. Discrete Mathematics 306(16), 2016–2020 (2006)

8. Youssef, A.M., Tavares, S.E.: Affine equivalence in the AES round function. Dis-
crete Applied Mathematics 148(2), 161–170 (2005)

9. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms-design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

10. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems.
J.Cryptology 4, 3–72 (1991)

11. Matsui, M.: Linear cryptanalysis method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

12. Bending, T., Fon-Der- Flaass, D.: Crooked functions, bent functions and distance
regular graphs. Electronic Journal of Combinatorics 5:R34, 14 (1998)

13. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation
functions. IEEE Transactions on Information Theory 14, 154–156 (1968)

14. Kasami, T.: The weight enumerators for several classes of subcodes of the second
order binary Reed-Muller codes. Information and Control 18, 369–394 (1971)

15. Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued
cross-correlation: a proof of Welch’s conjecture. IEEE Transactions on Information
Theory 46, 4–8 (2000)

16. Hollman, H.D.L., Xiang, Q.: A proof of the Welch and Niho conjectures on cross-
correlations of binary m-sequences. Finite Fields and Their Applications 7, 253–286
(2001)

Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings 133

17. Dobbertin, H.: Almost perfect nonlinear power functions on GF (2n): a new case
for n divisible by 5. In: Jungnickel, D., Niederreiter, H. (eds.) Proceedings of the
Conference on Finite Fields and Applications, pp. 113–121. Springer, Berlin (1999)

18. Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An infinite class of quadratic
APN functions which are not equvalent to power mappings (2005),
http://eprint.iacr.org/2005/359.pdf

19. Dobbertin, H.: One to one highly nonlinear power functions on GF (2n), Applicable
Algebra in Engineering. Communication and Computing 9, 139–152 (1998)

20. Maxwell, M.S.: Almost Perfect Nonlinear functions and related combinatorial
structures, Phd Thesis, Iowa State University (2005)

21. Akleylek, S., Yucel, M.D.: Comparing Substitution Boxes of the Third Generation
GSM and Advanced Encryption Standard Ciphers. In: Information Security and
Cryptology Conference, Ankara, Turkey (2007)

EA and CCZ Equivalence of Functions over

GF (2n)

K.J. Horadam

RMIT University, Melbourne, VIC 3001, Australia
kathy.horadam@rmit.edu.au

Abstract. EA-equivalence classes and the more general CCZ-equiva-
lence classes of functions over GF (2n) each preserve APN and AB prop-
erties desirable for S-box functions. We show that they can be related to
subsets c[T] and g[T] of equivalence classes [T] of transversals, respec-
tively, thus clarifying their relationship and providing a new approach
to their study. We derive a formula which characterises when two CCZ-
equivalent functions are EA-inequivalent.

Keywords: CCZ-equivalence, EA-equivalence, bundle, APN function.

1 Introduction

For functions φ : G→ N between groups, the subset Sφ = {(φ(x), x) : x ∈ G} of
N ×G can been used as the underlying instrument for measuring the nonlinear
behaviour of φ under several different measures of nonlinearity that are useful
in cryptography and coding. Pott in [13] uses Sφ to extend the definition of
maximal nonlinearity from the case N = G = Zn

2 to arbitrary finite abelian
groups N and G, in terms of values taken by the group characters of N ×G on
Sφ. For abelian groups N and G for which |N | divides |G|, results of Carlet and
Ding [5] show the notions of perfect nonlinearity, bentness and Pott’s maximal
nonlinearity are equivalent. This generalises the corresponding relationships for
functions defined on finite fields.

It remains very difficult to find and classify functions over finite fields that
satisfy such desirable nonlinearity conditions, or to determine whether, once
found, they are essentially new, that is, inequivalent in some sense to any of
the functions already found. Several notions of equivalence exist (c.f. [7, Section
9.2.2]), but the most useful for Boolean functions appear to be Carlet-Charpin-
Zinoviev (CCZ)-equivalence and extended affine (EA)-equivalence.

When N = G = Zn
2 , Sφ is called the graph1 of φ and is used to define CCZ-

equivalence [4,3], which partitions the set of functions into classes with the same
nonlinearity and differential uniformity [4, Proposition 3], [3, Proposition 2], but
not necessarily the same algebraic degree. EA-equivalent functions have the same

1 In [2,3,4], {(x, φ(x)) : x ∈ G} is called the graph of φ but we swap coordinates for
consistency with [13,6,7], without loss of generality.

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 134–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

EA and CCZ Equivalence of Functions over GF (2n) 135

nonlinearity, differential uniformity and, for functions of algebraic degree ≥ 2,
the same algebraic degree (see [2] for more details).

It is known [4] that EA-equivalence is a particular case of CCZ-equivalence,
and that any permutation is CCZ-equivalent to its inverse. In [2], Budaghyan
uses the inverse transformation to derive almost perfect nonlinear (APN) func-
tions that are EA-inequivalent to any power function, giving the simplest method
to construct such functions. Brinkmann and Leander [1] use backtrack program-
ming to classify all the APN functions in dimensions n = 4 and n = 5. Over
GF (16) there is only one CCZ-equivalence class of APN functions, which con-
sists of 2 EA-equivalence classes. Over GF (32) there are 3 CCZ-equivalence
classes of APN functions, containing respectively 3, 3 and 1 (for a total of 7)
EA-equivalence classes.

However, no general description of how EA-inequivalent functions might par-
tition a CCZ-class is known. This paper is a contribution to this problem.

As a subset of the group E = N × G, the graph Sφ is a transversal of the
normal subgroup N × {1}; that is, it intersects each coset N × {x} of N × {1}
in E in a single element. Therefore CCZ-equivalence classes should be related
in some fashion to equivalence classes of transversals. In earlier work [6,7], the
author has related equivalence classes of normalised transversals to equivalence
classes of normalised functions φ : G → N (called bundles b(φ)) using the
theory of group extensions. When N = G = Zn

2 , the bundle equivalence relation
between normalised functions φ : Zn

2 → Zn
2 differs slightly from EA-equivalence,

but the author’s affine bundle b̂(φ) is identical to the EA-equivalence class of φ
[10, Lemma 1].

Here, restriction to normalised functions φ : Zn
2 → Zn

2 allows us to define a
canonical transversal Tφ and its equivalence class [Tφ]. Inside [Tφ] is a canonical
equivalence class c[Tφ] of transversals corresponding to the bundle b(φ) (Corol-
lary 2). Consideration of the relationship of Tφ to its underlying graph Sφ leads
to the definition of a graph class g[Tφ] of transversals with c[Tφ] ⊆ g[Tφ] ⊆ [Tφ].
We introduce the graph bundle B(φ) of φ and show that b(φ) ⊆ B(φ) (Corollary
2). We relate B(φ) to the graph class g[Tφ] (Theorem 1), obtaining a version of
[3, Proposition 1].

The equivalence relation induced by the B(φ) coincides with CCZ-equivalence
for normalised functions, and the affine graph bundle B̂(φ) containing all trans-
lates of functions in B(φ) is identical to the CCZ-equivalence class containing φ
(Lemma 2).

Next (Theorem 3 and Lemma 5) we show that ϕ ∈ B(φ) if and only if there
exists ρ ∈ Sym1(Zn

2), s ∈ Zn
2 , a monomorphism ı = (ı1, ı2) : Zn

2 → Zn
2 × Zn

2 and
ϕ∗ ∈ b(φ) such that (ϕ · s) ◦ ρ = ı1 ◦ ϕ∗ and ρ = ı2 ◦ ϕ∗. In this formula, which
characterises how functions in B(φ) move away from b(φ), the permutation ρ
which specifies how a graph underlies a transversal T in g[Tφ] seems to be more
important than the subgroup ı(Zn

2) of which T is a transversal. In particular,
if ρ is an automorphism, ϕ ∈ b(φ) (Theorem 4). If φ is itself an automorphism
then inv(φ) ∈ b(φ) (Example 2).

136 K.J. Horadam

This gives a new approach to looking for EA-inequivalent APN and other
highly nonlinear functions within CCZ equivalence classes as well as for CCZ-
inequivalent functions.

The paper is organised as follows. In Section 2 we outline some basic results on
graphs and transversals. In Section 3 we show how equivalence of graphs relates
to equivalence of transversals and introduce graph classes and graph bundles. In
Section 4 we use the theory of group extensions to derive the main results and
clarify the relationships between EA and CCZ equivalence classes of normalised
functions.

2 Transversals and Graphs

Let G and N be finite abelian groups, written multiplicatively. We denote by
C1(G, N) = {f : G → N, f(1) = 1} the set of all normalised functions from
G to N . Any un-normalised f has a normalisation f · 1 ∈ C1(G, N) given by
f · 1(x) = f(1)−1f(x). If f is normalised, then f · 1 = f . For a ∈ G, define the
shift action f · a of a on f by

(f · a)(x) = f(a)−1f(ax), x ∈ G. (1)

For any a, b ∈ G, (f · a) · b = f · (ab).
Denote the subgroup of normalised permutations of a group A by Sym1(A),

the subgroup of automorphisms by Aut(A) and the inverse of permutation ρ by
inv(ρ). For φ ∈ C1(G, N), define ∂φ : G×G→ N to be2

∂φ(x, y) = φ(x)φ(y)φ(xy)−1 , x, y ∈ G (2)

which measures how much φ differs from a homomorphism.
If N

ı� E
π� G is an extension of N by G (that is, ı and π are group

homomorphisms with ker π = im ı) then each section t : G → E of π (that
is, a mapping such that π(t(x)) = x, x ∈ G) determines a transversal T =
{tx = t(x), x ∈ G} of the normal subgroup ı(N) in E (that is, a set of coset
representatives) and vice versa. Every element e ∈ E has a unique representation
as e = ı(a)tx for a ∈ N and x ∈ G. The transversal T is normalised if it intersects
ı(N) in 1, or equivalently, if t1 = 1.

For the extension N
ι� N ×G

κ� G, with ι(a) = (a, 1) and κ(a, x) = x, and
for each φ ∈ C1(G, N), we will call

Tφ = {tx = (φ(x), x), x ∈ G} (3)

the canonical transversal of ι(N) = N × {1} in N × G determined by φ. More
generally, we study the set underlying Tφ.

Definition 1. Let f : G → N . The graph of f is the set Sf = {(f(x), x), x ∈
G} ⊂ N ×G. It is normalised if f(1) = 1.
2 Note that in [6,7] the notation ∂−1φ is used. The technical reasons for this are

irrelevant to our purpose and here we write ∂φ for simplicity.

EA and CCZ Equivalence of Functions over GF (2n) 137

This definition is consistent with notation in [13,6,7] and agrees with that in
[3, p. 1143] for the case G = N = (GF (2n), +) ∼= Zn

2 , provided we switch first
and second components consistently. This can be done with no loss of generality.

The canonical transversal Tφ of N × {1} determined by φ ∈ C1(G, N) in (3)
has the graph Sφ as underlying set, and conversely, the graph Sφ of φ ∈ C1(G, N)
becomes the canonical transversal Tφ in (3) defined by the section t : x �→ tx =
(φ(x), x), x ∈ G. If we know a set is a normalised transversal in N ×G, it is easy
to identify when it is a translate of a normalised graph, since the translate has
a restricted form and hence the translated graph is itself a graph.

Lemma 1. Suppose N
ı� N × G

π� G is an extension and T is a normalised
transversal of ı(N) in N × G. Set T = {tx = (λ(x), ρ(x)), x ∈ G}, where
π(tx) = x. The following are equivalent:

1. there exists e ∈ N ×G such that T has the translate eSφ of the graph Sφ of
φ ∈ C1(G, N) as underlying set;

2. there exists s ∈ G such that T has the translate (φ(s), s)−1Sφ = Sφ·s of the
graph Sφ of φ ∈ C1(G, N) as underlying set;

3. ρ ∈ Sym1(G) and there exists s ∈ G such that λ = (φ · s) ◦ ρ . �

If, as in Lemma 1, T is a normalised transversal of ı(N) with underlying set Sφ·s
for φ ∈ C1(G, N) and s ∈ G, we have ρ ∈ Sym1(G) such that tx =

(
(φ · s) ◦

ρ(x), ρ(x)
)

= (φ(s), s)−1
(
φ ◦ (sρ)(x), (sρ)(x)

)
, for x ∈ G.

We represent T by

T ρ
φ·s = {tx =

(
(φ · s) ◦ ρ(x), ρ(x)

)
, x ∈ G}, (4)

where π(tx) = x, or, for brevity, by (ı, T ρ
ϕ, π), where ϕ = φ · s. Some basic

operations on such transversals (ı, T ρ
ϕ, π) are listed next.

Corollary 1. Let ϕ ∈ C1(G, N), ρ ∈ Sym1(G), and let (ı, T ρ
ϕ, π) be a transver-

sal as above.

1. If σ ∈ Aut(G), with inverse inv(σ), then (ı, T ρ◦σ
ϕ , inv(σ)◦π) is a transversal.

In particular, if ρ ∈ Aut(G) then (ı, T id
ϕ , ρ ◦ π) is a transversal.

2. If γ ∈ Aut(N), then (ı ◦ γ, T ρ
ϕ, π) is a transversal.

3 Equivalence of Transversals and Graphs

With no loss of generality, we may restrict the study of equivalence of transver-
sals, as defined next, to equivalence of normalised transversals.

Definition 2. Let T , T ′ be transversals of the isomorphic normal subgroups K,
K ′, respectively, in a group E. Define T and T ′ to be equivalent, written T ∼ T ′,
if there exist α ∈ Aut(E) and e ∈ E such that α(K) = K ′ and e T ′ = α(T), and
isomorphic, written T ∼= T ′, if T ′ = α(T) (ie. e = 1). Denote the equivalence
class of T by [T].

138 K.J. Horadam

From now on, we assume G = N = Zn
2
∼= (GF (2n), +), written additively, and

E = Zn
2 × Zn

2 = Z2n
2 .

We will focus on equivalence classes [Tφ] for φ ∈ C1(Zn
2 , Zn

2). However, [Tφ]
will usually contain normalised transversals which are not graphs as well a those,
such as Tφ itself, which are. Consequently, we isolate a subset of [Tφ] consisting
of normalised transversals with (translates of) normalised graphs as underlying
set, as well as a special subset containing the canonical transversals.

Definition 3. Let φ ∈ C1(Zn
2 , Zn

2). Define c[Tφ] ⊆ g[Tφ] ⊆ [Tφ] as follows.
The graph class g[Tφ] of Tφ is the set of normalised transversals in [Tφ] which

have a translate of a normalised graph as underlying set; that is, by Lemma 1,

g[Tφ] = {T ρ
ϕ·s : T ρ

ϕ·s ∼ Tφ, ϕ ∈ C1(Zn
2 , Zn

2), s ∈ Zn
2 , ρ ∈ Sym1(Z

n
2)}.

The canonical class c[Tφ] of Tφ is the set of canonical transversals in [Tφ]; that
is,

c[Tφ] = {Tϕ : Tϕ ∼ Tφ, ϕ ∈ C1(Zn
2 , Zn

2)}.
By Corollary 1 it is possible that the graph class g[Tφ] may contain transversals
(ı, T id

φ , π) with exactly the same elements as the canonical transversal
(ι, Tφ, κ), that is, defined by the same section, which are transversal to some
normal subgroup ı(N) different from ι(N) = Zn

2 ×{0}. An example to show that
this does occur is given in [8].

We now introduce an equivalence relation on normalised functions which co-
incides with CCZ-equivalence by affine permutations. This permits us to relate
CCZ and EA equivalence very naturally using transversals. Because this equiv-
alence relation is defined for functions between arbitrary groups in [8], we use a
different name.

Definition 4. Two functions φ, ϕ ∈ C1(Zn
2 , Zn

2) are graph equivalent if there
exist α ∈ Aut(Zn

2 × Zn
2) and e ∈ Zn

2 × Zn
2 such that α(Sφ) = e + Sϕ. They are

graph isomorphic if α(Sφ) = Sϕ, ie. e = 0. Denote the graph equivalence class
of φ by B(φ) and term it the graph bundle of φ.

Two functions f, f ′ : Zn
2 → Zn

2 are affine graph equivalent if their normal-
isations f · 0, f ′ · 0 ∈ C1(Zn

2 , Zn
2) are graph equivalent; that is, if there exist

α ∈ Aut(Zn
2 × Zn

2) and e ∈ Zn
2 × Zn

2 such that α(Sf ·0) = e + Sf ′·0. Denote the
affine graph equivalence class of f by B̂(f) and term it the affine graph bundle
of f .

Because Sf = (f(0), 0) + Sf ·0 we see that

f ∈ B̂(f ′)⇔ f · 0 ∈ B(f ′ · 0), (5)

so again, we may restrict to normalised functions with no loss of generality.
We now show that affine graph equivalence equals CCZ-equivalence (using

the affine permutation definition of CCZ-equivalence in [3, Definition 1]). The
linear permutation case of CCZ-equivalence corresponds to a particular case of
affine graph equivalence, which for normalised functions is graph isomorphism.

EA and CCZ Equivalence of Functions over GF (2n) 139

Lemma 2. Let f, f ′ : Zn
2 → Zn

2 . Then f is CCZ-equivalent to f ′ if and only if
B̂(f) = B̂(f ′).

Proof. By (5), f ∈ B̂(f ′) if and only if there exist α ∈ Aut(Zn
2 × Zn

2) and
e ∈ Zn

2×Zn
2 such that α(Sf) = α((f(0), 0))+e−(f ′(0), 0)+Sf ′ if and only if there

exist α ∈ Aut(Zn
2 ×Zn

2) and e′ ∈ Zn
2×Zn

2 such that α(Sf) = e′+Sf ′ if and only if
f is CCZ-equivalent to f ′. Note e′ = 0 if and only if e = (f ′(0), 0)−α((f(0), 0)). �

Since a graph is always representable as a canonical transversal, we may describe
graph equivalence in terms of graphs and transversals. The affine version of
Theorem 1.1 is the extension of the characterisation [3, Proposition 1] of CCZ-
equivalence from the linear permutation case to the affine permutation case.

Theorem 1. Let φ, ϕ ∈ C1(Zn
2 , Zn

2). Let Sφ, Sϕ, be their respective graphs and
let Tφ be the canonical transversal (3) determined by φ.

1. ϕ ∈ B(φ) if and only if there exist α ∈ Aut(Zn
2 × Zn

2), ρ ∈ Sym1(Zn
2) and

s ∈ Zn
2 such that

α(Tφ) = T ρ
ϕ·s ;

2. ϕ ∈ B(φ) if and only if there exist s ∈ Zn
2 and ρ ∈ Sym1(Zn

2) such that
T ρ

ϕ·s ∈ g[Tφ] .

Proof. 1. By definition, ϕ ∈ B(φ) if and only if there exist α ∈ Aut(Zn
2 ×Zn

2) and
e ∈ Zn

2 × Zn
2 such that the normalised transversal α(Tφ) of α(Zn

2 × {0}) (with
underlying set α(Sφ)) has the translate e+Sϕ as underlying set. Then Lemma 1
applies.

2. By Part 1 and Lemma 1, if ϕ ∈ B(φ) there exist s ∈ Zn
2 and ρ ∈ Sym1(Zn

2)
such that T ρ

ϕ·s ∼= Tφ, so T ρ
ϕ·s ∈ g[Tφ]. Conversely if there exist s ∈ Zn

2 and
ρ ∈ Sym1(Zn

2) such that T ρ
ϕ·s ∼ Tφ, then there exist α ∈ Aut(Zn

2 × Zn
2) and

e ∈ Zn
2 × Zn

2 such that α(Tφ) = e + T ρ
ϕ·s, so α(Sφ) = e − (ϕ(s), s) + Sϕ and

ϕ ∈ B(φ). �

In the next section, we use the theory of group extensions to relate graph bundles
B(φ) to bundles b(φ).

4 Transversals and Bundles

Transversals T are used in the theory of group extensions to define cocycles ψT

according to the following standard construction. See [7] for further details.

Lemma 3. Suppose that Zn
2

ı� Zn
2 ×Zn

2

π� Zn
2 is an extension of Zn

2 by Zn
2 and

let T = {tx, x ∈ Zn
2 : π(tx) = x} be a normalised transversal of ı(Zn

2) in Zn
2 ×Zn

2 .
Then ψT defined by

ψ
T
(x, y) = ı−1(tx + ty − txy), (6)

for all x, y ∈ Zn
2 , is a cocycle, and must be of the form ∂φ for some φ ∈

C1(Zn
2 , Zn

2). �

140 K.J. Horadam

The mapping from transversal to cocycle given in Lemma 3 is surjective. We
illustrate this for the case at hand.

Lemma 4. Let φ ∈ C1(Zn
2 , Zn

2). Let Tφ in (3) be the canonical transversal. Then
ψTφ

= ∂φ. �

Equivalence of transversals determines a corresponding equivalence of cocycles.

Theorem 2. [7, Theorem 8.5] Let T and T ′ be normalised transversals in Zn
2 ×

Zn
2 = E of the normal subgroups K and K ′ isomorphic to Zn

2 , respectively, for
which E/K ∼= E/K ′ ∼= Zn

2 . Let ψT = ∂φ, ψT ′ = ∂ϕ be the corresponding cocycles
of Lemma 3, respectively. The following are equivalent:

1. T ∼ T ′ ;
2. there exist γ, θ ∈ Aut(Zn

2) and a ∈ Zn
2 such that

∂ϕ = ∂(γ ◦ (φ · a) ◦ θ)); (7)

3. there exist γ, θ ∈ Aut(Zn
2), a ∈ Zn

2 and χ ∈ Hom(Zn
2 , Zn

2) such that

ϕ = (γ◦(φ ·a)◦θ) χ . �

Equivalence classes of normalised functions φ : Zn
2 → Zn

2 are defined using
Theorem 2.3. These equivalence classes are termed bundles; that is, the bundle
b(φ) of φ is{

(γ ◦ (φ · a) ◦ θ) χ : (γ, a, θ, χ) ∈ (Aut(Zn
2), Zn

2 , Aut(Zn
2), Hom(Zn

2 , Zn
2))

}
(8)

Bundles exactly characterise the canonical classes of transversals.

Corollary 2. Let φ, ϕ ∈ C1(Zn
2 , Zn

2).

1. [7, Theorem 9.22] b(φ) = b(ϕ)⇔ c[Tφ] = c[Tϕ]. Hence c[Tφ] ={
T(γ◦(φ·a)◦θ)χ : (γ, a, θ, χ) ∈ (Aut(Zn

2), Zn
2 , Aut(Zn

2), Hom(Zn
2 , Zn

2))
}
. (9)

2. b(φ) ⊆ B(φ) so if b(ϕ) = b(φ) then B(ϕ) = B(φ) and
c[Tφ] = c[Tϕ] ⊂ g[Tϕ] ∩ g[Tφ].

Proof. 1. By definition, c[Tφ] = c[Tϕ]⇔ Tφ ∼ Tϕ which, by Lemma 4, Theorem
2 and (8), holds ⇔ b(φ) = b(ϕ).

2. By Part 1, if ϕ ∈ b(φ), Tφ ∼ Tϕ and by Definition 2 there exist α ∈
Aut(Zn

2 ×Zn
2) and e ∈ Zn

2 × Zn
2 such that α(Zn

2 × {0}) = Zn
2 × {0} and α(Tφ) =

e + Tϕ, so α(Sφ) = e + Sϕ. By Definition 4, ϕ ∈ B(φ). The rest follows by
symmetry. �

The affine bundle b̂(f) of f : Zn
2 → Zn

2 is

b̂(f) = {f ′ : Zn
2 → Zn

2 , f ′ · 0 ∈ b(f · 0)}. (10)

EA and CCZ Equivalence of Functions over GF (2n) 141

Example 1. [10, Lemma 1] The affine bundle b̂(f) of f : Zn
2 → Zn

2 equals the
EA-equivalence class of f .

In general, the surjective mapping of Lemma 4 is not injective: more than one
transversal will define the same cocycle. All transversals determining the same
cocycle ∂φ as Tφ may be characterised, using Lemma 3.

Lemma 5. Let Zn
2

ı� Zn
2 × Zn

2

π� Zn
2 be an extension of Zn

2 by Zn
2 . Let

T = {tx, x ∈ Zn
2} with π(tx) = x be a normalised transversal in Zn

2 × Zn
2

of the normal subgroup K = ı(Zn
2), with corresponding cocycle ψT . Set ı(n) =

(ı1(n), ı2(n)), n ∈ Zn
2 , for ı1, ı2 ∈ Hom(Zn

2 , Zn
2), and tx = (λ(x), ρ(x)), x ∈ Zn

2

for λ, ρ ∈ C1(Zn
2 , Zn

2) . Let φ ∈ C1(Zn
2 , Zn

2).
Then ψT = ∂φ if and only if there exists χ ∈ Hom(Zn

2 , Zn
2) such that

λ = ı1 ◦ (φ + χ), ρ = ı2 ◦ (φ + χ). (11)

In particular, if ϕ ∈ C1(Zn
2 , Zn

2), s ∈ Zn
2 and ρ ∈ Sym1(Zn

2), ψT ρ
ϕ·s = ∂φ if and

only if there exist χ ∈ Hom(Zn
2 , Zn

2) such that

(ϕ · s) ◦ ρ = ı1 ◦ (φ + χ), ρ = ı2 ◦ (φ + χ). (12)

Proof. Note ı1(Zn
2), ı2(Zn

2) are subgroups of Zn
2 . Application of Lemma 3 is

straightforward:

ı(ψT (x, y)) = tx + ty − txy

= (λ(x) + λ(y)− λ(xy), ρ(x) + ρ(y)− ρ(xy))
= (∂λ(x, y), ∂ρ(x, y))

by (2), so ψT = ∂φ⇔ ı◦ψT = ı◦∂φ⇔ (∂λ, ∂ρ) = (ı1 ◦∂φ, ı2 ◦∂φ)⇔ (∂λ, ∂ρ) =
(∂(ı1 ◦ φ), ∂(ı2 ◦ φ)), because ı1 and ı2 are homomorphisms. �

Next we relate bundles and graph bundles. If Sϕ is a transversal T in [Tφ] this
DOES NOT necessarily imply ϕ ∈ b(φ) (though this can be true). Nor does it
imply that ψT = ∂ϕ, though again, this may be true. To combine Theorem 2
with Theorem 1 we need the case ρ ∈ Sym1(Zn

2) of Lemma 5.

Theorem 3. Let φ, ϕ ∈ C1(Zn
2 , Zn

2). Then ϕ ∈ B(φ) if and only if there exist
ρ ∈ Sym1(Zn

2), s ∈ Zn
2 , θ, γ ∈ Aut(Zn

2) and χ ∈ Hom(Zn
2 , Zn

2) such that

ψT ρ
ϕ·s = ∂ϕ∗ (13)

for
ϕ∗ = (γ ◦ φ ◦ θ) + χ .

Proof. By Theorem 2, ϕ ∈ B(φ) if and only if there exist ρ ∈ Sym1(Zn
2) and

s ∈ Zn
2 such that T ρ

ϕ·s ∼= Tφ , if and only if (by Lemma 4 and Theorem 2 with
e = 0) there exist ρ ∈ Sym1(Zn

2), s ∈ Zn
2 , θ ∈ Aut(Zn

2), γ ∈ Aut(Zn
2) and χ ∈

Hom(Zn
2 , Zn

2) such that ψT ρ
ϕ·s = ∂ϕ∗ where ϕ∗ = (γ ◦ φ ◦ θ) + χ . �

142 K.J. Horadam

From Theorem 3 and Lemma 5 we see that ϕ ∈ B(φ) if and only if there exists
ρ ∈ Sym1(Zn

2), s ∈ Zn
2 , a monomorphism ı = (ı1, ı2) : Zn

2 → Zn
2 × Zn

2 and
ϕ∗ ∈ b(φ) such that (ϕ · s) ◦ ρ = ı1 ◦ ϕ∗ and ρ = ı2 ◦ ϕ∗.

An important example is the case ρ ∈ Aut(Zn
2).

Theorem 4. Let φ, ϕ ∈ C1(Zn
2 , Zn

2) and ϕ ∈ B(φ). If there exist ρ ∈ Aut(Zn
2)

and s ∈ Zn
2 such that T ρ

ϕ·s ∼= Tφ then ϕ ∈ b(φ) .

Proof. If T ρ
ϕ·s ∼= Tφ , there exists α ∈ Aut(Zn

2 × Zn
2) such that T ρ

ϕ·s = α(Tφ) is a
normalised transversal of α◦ι(Zn

2), where α(tx) = ((ϕ·s)◦ρ(x), ρ(x)) for tx ∈ Tφ.
By Lemma 3, α ◦ ι(ψT ρ

ϕ·s(x, y)) = α ◦ ι(∂φ(x, y)); that is, ψT ρ
ϕ·s = ∂φ. Let J =

(Zn
2×{0})∩α(Zn

2×{0}), so α restricted to J is an automorphism which extends to
an automorphism of Zn

2 ×{0}. Thus there is a γ ∈ Aut(Zn
2) such that α◦ ι = ι◦γ

on J . Because ρ is a homomorphism, α◦ ι(ψT ρ
ϕ·s(x, y)) =

(
∂((ϕ ·s)◦ρ)(x, y), 0

)
=

ι(∂((ϕ · s) ◦ ρ)(x, y)) = ι ◦ γ(∂φ(x, y)). Therefore ∂((ϕ · s) ◦ ρ) = ∂(γ ◦ φ). By
Theorem 2, ϕ ∈ b(φ). �

In [7, Corollary 9.23], the author claimed incorrectly that a normalised permuta-
tion and its inverse lie in the same bundle. For instance, a Gold power function
φ(x) = x2i+1, (i, n) = 1, over G = (GF (2n), +), n odd, has algebraic degree 2,
so is not itself affine, and thus all functions in its bundle have algebraic degree
2 [3, p. 1142]. However its inverse has algebraic degree (n + 1)/2 [11]. Instead, a
normalised permutation and its inverse lie in the same graph bundle.

Example 2. Let φ ∈ Sym1(Zn
2) have inverse inv(φ). Then

1. B(inv(φ)) = B(φ) ;
2. if φ ∈ Aut(Zn

2), b(φ) = b(inv(φ)).

Proof. 1. Consider the extension Zn
2

ı� Zn
2 × Zn

2

π� Zn
2 , with ı(y) = (0, y) and

π((x, y)) = x. The transversal T = {tφx = (x, φ(x)), x ∈ Zn
2} with π(tφx) = x of

{0}×Zn
2 in Zn

2 ×Zn
2 is T φ

inv(φ) by (4), and ψT = ∂φ, by Lemma 3. Since φ ∈ b(φ)
the result follows from Theorem 3 on setting ϕ∗ = ρ = φ and ϕ = inv(φ).

2. If φ ∈ Aut(Zn
2), inv(φ) = inv(φ) ◦ φ ◦ inv(φ) satisfies (8). �

In order to identify the way in which B(φ) partitions into bundles (see Corollary
2) we must first isolate the ρ ∈ Sym1(Z

n
2) and ϕ ∈ B(φ) such that ϕ ∈ b(φ). By

Theorem 4 the set of such ρ includes Aut(Zn
2). We conclude that it is the set of

permutations ρ for which there is a transversal T ρ
ϕ·s which is the key to these

problems, rather than the way in which automorphisms of Zn
2 × Zn

2 act on the
subgroup Zn

2 × {0}.

Acknowledgements. The author is very grateful to Claude Carlet, Lilya
Budaghyan and Alex Pott for numerous conversations and insightful comments
which helped clarify her understanding of EA and CCZ equivalence, and correct
errors in earlier publications [6,7,9]. She is also grateful to Pascale Charpin and
the hospitality of INRIA, where this work was initiated. Finally she is grateful
to the three anonymous referees whose comments much improved the clarity and
motivation of the exposition.

EA and CCZ Equivalence of Functions over GF (2n) 143

References

1. Brinkmann, M., Leander, G.: On the classification of APN functions up to di-
mension 5. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) Proc. International
Workshop on Coding and Cryptography, Versailles, France, pp. 39–58 (2007)

2. Budaghyan, L.: The simplest method for constructing APN polynomials EA-
inequivalent to power functions. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS,
vol. 4547, pp. 177–188. Springer, Heidelberg (2007)

3. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Trans. Inform. Theory 52, 1141–1152 (2006)

4. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)

5. Carlet, C., Ding, C.: Highly nonlinear mappings. J. Complexity 20, 205–244 (2004)
6. Horadam, K.J.: A theory of highly nonlinear functions. In: Fossorier, M., Imai,

H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 87–100. Springer,
Heidelberg (2006)

7. Horadam, K.J.: Hadamard Matrices and Their Applications. Princeton University
Press, Princeton (2007)

8. Horadam, K.J.: Transversals, graphs and bundles of functions, in preparation.
9. Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions, ex-

tended abstract. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) Proc. International
Workshop on Coding and Cryptography, Versailles, France, pp. 197–206 (2007)

10. Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions. Des.,
Codes Cryptogr. (to appear, 2008), doi:10.1007/s10623-008-9172-z

11. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

12. Pott, A.: A survey on relative difference sets. In: Groups, Difference Sets and the
Monster, pp. 195–232. de Gruyter, New York (1996)

13. Pott, A.: Nonlinear functions in abelian groups and relative difference sets. Discr.
Appl. Math. 138, 177–193 (2004)

On the Number of Two-Weight Cyclic Codes

with Composite Parity-Check Polynomials

Gerardo Vega

Dirección General de Servicios de Cómputo Académico, Universidad Nacional
Autónoma de México, 04510 México D.F., Mexico

gerardov@servidor.unam.mx

Abstract. Sufficient conditions for the construction of a two-weight
cyclic code by means of the direct sum of two one-weight cyclic codes,
were recently presented in [4]. On the other hand, an explicit formula
for the number of one-weight cyclic codes, when the length and dimen-
sion are given, was proved in [3]. By imposing some conditions on the
finite field, we now combine both results in order to give a lower bound
for the number of two-weight cyclic codes with composite parity-check
polynomials.

Keywords: One-weight cyclic codes and two-weight cyclic codes.

1 Introduction

In [5] it was proved that if C is a two-weight projective cyclic code of dimension
k over IFq, then either

1) C is irreducible, or
2) if q �= 2, C is the direct sum of two one-weight cyclic codes of length n =

λ(qk−1
q−1) where λ divides q − 1 and λ �= 1. Additionally, the two nonzero

weights of C are (λ − 1)qk−1 and λqk−1 (direct sum here means direct sum
as vector spaces).

An infinite class of two-weight cyclic projective codes which are irreducible
is known for any q (deduced from semi-primitive codes). The propose of this
work, is to show that it is also an infinite class for the second case. That is, we
want to determine the number of two-weight (projective or not projective) cyclic
codes that are constructed by means of the direct sum of two one-weight cyclic
codes of the same length and dimension. For one-weight cyclic codes it is known
(see [3]) that, for a given length and dimension, it is possible to determine the
exact number of this kind of codes. Using this and the sufficient conditions for
the construction of a two-weight cyclic code by means of the direct sum of two
one-weight cyclic codes, that were recently presented in [4], we now give, for
some finite fields, a lower bound for the number of two-weight cyclic codes with
composite parity-check polynomials having exactly two irreducible factors of the
same degree.

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 144–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Number of Two-Weight Cyclic Codes 145

Since the main components of this work are the one-weight cyclic codes, it is
important to keep in mind the restriction on the length of this kind of codes. For
this, let C be an [n, k] linear code over IFq, whose dual weight is at least 2. It
is well known (see for example [5]) that if, additionally, C is a one-weight code,
then its length n must be given by

n = λ
qk − 1
q − 1

, (1)

for some positive integer λ. Since the minimal distance of the dual of any nonzero
cyclic code over IFq is greater than 1, it follows that the length n of all one-
weight cyclic codes of dimension k, is given by (1). Here we are going to assume
n ≤ qk − 1. Thus, since all the one-weight cyclic codes are irreducible, then, for
this particular case, the zeros of xn − 1, which form a cyclic group, lie in the
extension field IFqk and therefore n divides qk−1. That is, for some integer μ, we

have λ(qk−1
q−1)μ = (q− 1)(qk−1

q−1), which implies that λ divides q− 1. Since we are
interested in the construction of codes as the direct sum of two one-weight cyclic
codes, then the length n, for such constructed codes, will always be assumed to
be given by (1). That is, in general, (1) gives also the length for a constructed
two-weight cyclic code, where λ|(q − 1).

This work is organized as follows: in Section 2 we recall some already known
results about one-weight cyclic codes and two-weight cyclic codes. More specif-
ically, in this section we recall the formula that gives the number of one-weight
cyclic codes, and also, we recall the sufficient conditions for the construction of
a two-weight cyclic code by means of the direct sum of two one-weight cyclic
codes. Section 3 is devoted to present some preliminary results. These results
(two lemmas and one corollary) will be fundamental in order to achieve our goal.
In Section 4 we present, for some finite fields, a lower bound for the number of
two-weight cyclic codes with composite parity-check polynomials. This lower
bound will show that there is, indeed, an infinite class of codes for the second
case that was mentioned at the beginning of this section. Finally, in Section 5
some examples are shown, whereas Section 6 is devoted to conclusions.

2 Some Already Known Results

First of all, we set, for this section and for the rest of this work, the following:

Notation: By using p, q, m and k, we will denote four positive integers such that
p is a prime number and q = pm. For now on, we will fix Δ = (qk − 1)/(q − 1),
w1 = gcd(Δ, q − 1) and for each integer j, with 1 ≤ pj < q, we set w

(j)
2 =

gcd(Δ, q − 1, pj − 1). Since gcd(Δ, (q − 1)w(j)
2 /w1) = w

(j)
2 , we can write w2 as a

linear combination of Δ and (q − 1)w(j)
2 /w1 with integer coefficients x0 and y0,

that is

w2 = Δx0 +
(q − 1)w(j)

2

w1
y0 .

146 G. Vega

Then for each j, with 1 ≤ pj < q, we will fix the integers x0 and z0 in such way
that

Δx0 ≡ w
(j)
2 (mod

(q − 1)w(j)
2

w1
) and z0 = −x0

(
(pj − 1)

w
(j)
2

)
. (2)

By using φ we will denote the Euler φ-function (see, for example, [1, p. 7]),
whereas by using δ we will denote the Kronecker’s delta (δx(y) is one if x = y
and zero otherwise).

Now, we recall some useful definitions:
A linear code is said to be projective if the minimum weight of its dual code

is at least 3. This means that the columns of a generator matrix are nonzero
distinct representatives of the one-dimensional subspaces of IFqk (the projective
points) where k is the dimension of the code.

A linear code is a N -weight code if the number of nonzero weights is N .
A cyclic code is irreducible if its check polynomial is irreducible (its polynomial

representation is a minimal ideal).
For a given length and dimension, it is possible to determine the exact number

of one-weight cyclic codes. The following result, that was introduced in [3], gives
an explicit formula for such number.

Theorem 1. Let q, k and Δ be as before. Let γ be a primitive element of IFqk .
For a positive integer a, let ha(x) ∈ IFq[x] be the minimal polynomial of γa. Let
n = λΔ, for some integer λ > 0, which divides q − 1. Then, the following two
statements are equivalent:

A) gcd(a, Δ) = 1.
B) ha(x) is the parity-check polynomial for a one-weight cyclic code of dimension

k.

Additionally, the number of one-weight cyclic codes of length n and dimension k
is equal to

δλ(gcd(n, q − 1))
λφ(Δ)

k
.

Sufficient conditions for the construction of a two-weight cyclic code by means
of the direct sum of two one-weight cyclic codes, were recently presented in [4].
The following theorem gives the details of such conditions.

Theorem 2. Let p, q, k, and Δ be as before. Let γ be a primitive element of
IFqk . For a positive integer a, let ha(x) ∈ IFq[x] be the minimal polynomial of
γa. Also, let a1, a2 be integers such that a1q

i �≡ a2 (mod qk − 1), for all i ≥ 0,
and where we are assuming that a2 is a unit in the ring ZZΔ (that is a2 ∈ ZZ∗

Δ),
and let ã2 be the inverse of a2 in ZZ∗

Δ. In addition, let ν be the integer such that
ν = gcd(a1− a2, q− 1). For some integer �, such that �| gcd(a1, a2, q− 1), we set
λ = (q−1)�

gcd(a1,a2,q−1) , n = λΔ and μ = (q − 1)/λ. Suppose that at least one of the
following two conditions holds:

On the Number of Two-Weight Cyclic Codes 147

1) p = 2, k = 2, ν = 1 and a1 is a unit in the ring ZZΔ, or
2) for some integer j, with 1 ≤ pj < qk, we have

(1 + ã2(a1 − a2))pj ≡ 1 (mod Δν) , (3)

then the following four assertions are true:

a) ha1(x) and ha2(x) are the parity-check polynomials for two different one-
weight cyclic codes of length n and dimension k.

b) μ|ν and λ > ν/μ.
c) If C is the cyclic code with parity-check polynomial ha1(x)ha2(x), then C is

an [n, 2k] two-weight cyclic code with weight enumerator polynomial:

A(z) = 1 + (μ/ν)n(q − 1)z(λ−(ν/μ))qk−1
+ (q2k − 1− (μ/ν)n(q − 1))zλqk−1

.

d) C is a projective code if and only if ν = μ.

Since ν = gcd(a1 − a2, q − 1) then clearly ν|q − 1, which in turn implies that
Δν|qk− 1 (recall that Δ = (qk − 1)/(q− 1)), therefore qk ≡ 1 (mod Δν). Now,
since pj|qk, then there exist an integer j′, with 1 ≤ pj′ < qk such that pjpj′ ≡ 1
(mod Δν) (in order to find such j′, take pj′ = 1 if pj = 1 and pj′ = qk/pj

otherwise). Thus, multiplying by pj′ in both sides of (3) we get

ã2(a1 − a2) ≡ pj′ − 1 (mod Δν) , for some integer j′, with 1 ≤ pj′ < qk .

If we replace j′ by j, in previous congruence, we obtain the following:

Remark 1. Since qk ≡ 1 (mod Δν) then it is important to observe that condi-
tion 2), in previous theorem, is equivalent to

ã2(a1 − a2) ≡ pj − 1 (mod Δν) , for some integer j, with 1 ≤ pj < qk .

Remark 2. Due to Assertion b), in previous theorem, we conclude that λ > 1 for
all two-weight cyclic codes constructed as a direct sum of two one-weight cyclic
codes.

As we will see in Section 4, Theorem 1 and Condition 2), in previous theorem,
will be the main tool in order to give a lower bound for the number of two-weight
cyclic codes with composite parity-check polynomials.

3 Some Preliminary Results

We begin this section recalling the following:

Fact 1. Let S be a finite set, where a symmetric relation ∼ has been established
among pairs of elements in S. Suppose that for some fixed integer t and any
element x in S, we have that |{y ∈ S : x �= y and x ∼ y}| = t. Then

|{{x, y} ∈ 2S : x �= y and x ∼ y}| = |S|t
2

.

148 G. Vega

The following is our first result.

Lemma 1. Let p, q, k, Δ, w1, j, w
(j)
2 and x0 be as before. Also, let a2 and

μ be two integers such that gcd(Δ, a2) = 1. For each integer i we set a1(i) =
pja2 + iμΔ and ν(i) = gcd(a1(i)−a2, q−1). Suppose that gcd((q−1)/w1, p

j−1)
divides (pj−1)/w

(j)
2 . Then there exists an integer t0 in such way that the following

four assertions are true:

a) t0 does not depend on the choice of i.
b) pj − 1 divides t0.

c) ν(i) = gcd(pj − 1 + (t0 + iμ)Δ,
(q−1)w

(j)
2

w1
).

d) gcd(Δ, ν(i)) = w
(j)
2 , for all i.

Proof. Since gcd((q − 1)/w1, p
j − 1) divides (pj − 1)/w

(j)
2 , then there exists an

integer y0 such that

y0

(
(q − 1)

w1

)
≡ −x0

(
(a2 − 1)(pj − 1)

w
(j)
2

)
(mod pj − 1) .

Let

t0 = x0

(
(a2 − 1)(pj − 1)

w
(j)
2

)
+ y0

(
(q − 1)

w1

)
. (4)

Clearly t0 does not depend on the choice of i and pj − 1 divides t0.
Now, by hypothesis we have a1(i) − a2 = a2(pj − 1) + iμΔ. If w1/w

(j)
2 �= 1,

then clearly w1/w
(j)
2 divides both Δ and q− 1, but it does not divide a2(pj− 1),

since gcd(Δ, a2) = 1. So, in general, we have

ν(i) = gcd(a2(pj − 1) + iμΔ, q − 1)

= gcd(a2(pj − 1) + iμΔ,
(q − 1)w(j)

2

w1
). (5)

On the other hand, since we know that w
(j)
2 |Δ then y0(q − 1)Δ/w1 ≡ 0

(mod (q − 1)w(j)
2 /w1). Therefore

(t0 + iμ)Δ ≡ Δx0

(
(a2 − 1)(pj − 1)

w
(j)
2

)
+ iμΔ (mod

(q − 1)w(j)
2

w1
)

≡ a2(pj − 1)− (pj − 1) + iμΔ (mod
(q − 1)w(j)

2

w1
) ,

since Δx0 ≡ w
(j)
2 (mod (q − 1)w(j)

2 /w1). Thus, by using (5), the third assertion
follows.

Let d = gcd(Δ, ν(i)). Since w
(j)
2 = gcd(Δ, q−1, pj−1) and ν(i) = gcd(a2(pj−

1)+ iμΔ, q−1), then w
(j)
2 |ν(i) and therefore w

(j)
2 |d. Now, if d|Δ and d|ν(i), then

by using the third assertion, and since ν(i) = gcd(a1(i)−a2, q−1), we have that
d|q − 1 and d|pj − 1, thus d|w(j)

2 . Therefore d = w
(j)
2 . ��

On the Number of Two-Weight Cyclic Codes 149

By taking advantage of previous result, we now present the following:

Lemma 2. Let p, q, k, Δ, w1, j, w
(j)
2 and x0 be as before. Let λ and μ be two

integers. Also, let a2 be an integer such that a2 is a unit in the ring ZZΔ. Let ã2

be the inverse of a2 in ZZ∗
Δ. Let t0 be the integer that one obtains under Lemma

1. Let I = {0, 1, 2, . . . , λ−1} and T = {t0, t0 +μ, t0 +2μ, . . . , t0 +(λ−1)μ}. For
each i ∈ I, we set a1(i) = pja2 + iμΔ and ν(i) = gcd(a1(i)− a2, q− 1). Suppose
that gcd((q − 1)/w1, p

j − 1) divides (pj − 1)/w
(j)
2 . Then there exists a bijective

map B : I → T in such way that, for each i ∈ I, the following two assertions are
true:

a) If ã2(a1(i)− a2) ≡ pj − 1 (mod Δν(i)) or ν(i)|B(i), then ν(i)|(pj − 1).
b) ã2(a1(i)− a2) ≡ pj − 1 (mod Δν(i)) ⇐⇒ ν(i)|B(i).

Proof. For each i ∈ I, we take the uniquely determined integer B(i) ∈ T such
that B(i) = t0 + iμ. Due to Assertion a), in previous lemma, B is clearly a
bijective map.

Since a2ã2 ≡ 1 (mod Δ), then there exists an integer � such that a2ã2 =
1 + �Δ, but we know that a1(i)− a2 = a2(pj − 1) + iμΔ, thus

ã2(a1(i)− a2) = pj − 1 + (�(pj − 1) + ã2iμ)Δ . (6)

On the other hand, by Assertion d) in previous lemma, we have w
(j)
2 |ν(i). By

keeping this in mind, let d be the greatest integer satisfying:

• d|ν(i) and
• π|d ⇐⇒ π|w(j)

2 , for all prime numbers π.

Clearly w
(j)
2 |d and gcd(d, ν(i)/d) = 1.

Now, we are going to prove the first assertion. So, if ã2(a1(i) − a2) ≡ pj − 1
(mod Δν(i)), thus ν(i)|(ã2(a1(i)−a2))−(pj−1)). But ν(i)|(a1(i)−a2) therefore
ν(i)|(pj−1). On the other hand, if ν(i)|B(i), then ν(i)|(t0 + iμ). Thus, by virtue
of Assertion c) in previous lemma, we have ν(i)|(pj − 1).

Now, we are going to prove the second assertion. So, if ã2(a1(i)− a2) ≡ pj− 1
(mod Δν(i)), then, by using (6), we conclude ν(i)|(�(pj − 1) + ã2iμ), but, due
to Assertion a), we know that ν(i)|(pj− 1), therefore this implies that ν(i)|ã2iμ.
Now gcd(Δ, ν(i)) = w

(j)
2 and ã2 ∈ ZZ∗

Δ, thus d|iμ. On the other hand, since
ν(i)|(pj − 1) then, by virtue of Assertion c) in previous lemma, we have that
ν(i)|(t0 + iμ)Δ. Again gcd(Δ, ν(i)) = w

(j)
2 , thus (ν(i)/d)|(t0 + iμ). But, by virtue

of Assertion b) in previous lemma, and since (ν(i)/d)|(pj−1), we have (ν(i)/d)|t0,
then (ν(i)/d)|iμ. In this way, what we have proven is gcd(d, ν(i)/d) = 1, d|iμ
and (ν(i)/d)|iμ, therefore ν(i)|iμ. Now Assertion b), in previous lemma, implies
that ν(i)|t0, and since ν(i)|iμ, then the final conclusion is ν(i)|B(i).

Conversely, suppose that ν(i)|B(i). Again, due to Assertion a), we know that
ν(i)|(pj − 1). Then, by using Assertion b) in previous lemma, we have ν(i)|t0,
so ν(i)|iμ, since B(i) = t0 + iμ. Thus what we have is ν(i)|(pj − 1) and ν(i)|iμ,
therefore �(pj−1)+ ã2iμ ≡ 0 (mod ν(i)), for any integer �. Therefore, by using
(6), we have the result. ��

150 G. Vega

We end this section with the following:

Corollary 1. Let p, q, k, Δ, w1, j, w
(j)
2 , x0 and z0 be as before. Let λ and

μ be two integers such that λμ = q − 1. Let I = {0, 1, 2, . . . , λ − 1} and Z =
{z0, z0 + μ, z0 + 2μ, . . . , z0 + (λ − 1)μ}. Let ν0 be any positive integer such that
ν0|(q − 1). For each choice of j and ν0 we set the integer N

(j)
ν0 given by

N (j)
ν0

= |{z ∈ Z : gcd(pj − 1 + zΔ,
(q − 1)w(j)

2

w1
) = ν0 and ν0|z}| . (7)

Also, let a2 be an integer such that μ|a2 and a2 is a unit in the ring ZZΔ. Let
ã2 be the inverse of a2 in ZZ∗

Δ. For each i ∈ I, we set a1(i) = pja2 + iμΔ
and ν(i) = gcd(a1(i) − a2, q − 1). Suppose that gcd((q − 1)/w1, p

j − 1) divides
(pj − 1)/w

(j)
2 . Then

|{i ∈ I : ã2(a1(i)− a2) ≡ pj − 1 (mod Δν(i)) and ν(i) = ν0}| = N (j)
ν0

. (8)

Proof. Let t0 be the integer that one obtains under Lemma 1. Also, let T =
{t0, t0 + μ, t0 + 2μ, . . . , t0 + (λ− 1)μ}. By using (2) and (4) we have

t0 = z0 + x0

(
a2(pj − 1)

w
(j)
2

)
+ y0

(
(q − 1)

w1

)
.

Since μ|a2 and a2 ∈ ZZ∗
Δ, then μ ∈ ZZ∗

Δ. But gcd(Δ, q − 1) = w1 thus
μ|((q−1)/w1). In consequence we have that μ divides both x0a2(pj−1)/w

(j)
2 and

y0(q− 1)/w1, therefore, and since λμ = q− 1, we have that for each i ∈ I, there
exists a uniquely determined integer z ∈ Z such that z ≡ t0 + iμ (mod q − 1).
Since ν0|(q−1) then ν0|z if and only if ν0|(t0 +iμ). Thus, as a direct consequence
of the fact that B : I → T , in previous lemma, is a bijective map, and due to
Assertions c) and b) in Lemmas 1 and 2, respectively, we can now conclude that
for each i ∈ I, there exists a uniquely determined integer z ∈ Z such that

ã2(a1(i)− a2) ≡ pj − 1 (mod Δν(i)) and ν(i) = ν0

if and only if

gcd(pj − 1 + (t0 + iμ)Δ,
(q − 1)w(j)

2

w1
) = ν0 and ν0|(t0 + iμ)

if and only if

gcd(pj − 1 + zΔ,
(q − 1)w(j)

2

w1
) = ν0 and ν0|z ,

since we know that z ≡ t0 + iμ (mod q − 1), ((q − 1)w(j)
2 /w1)|(qk − 1) and

ν0|(t0 + iμ)⇔ ν0|z . ��
Remark 3. It is important to emphasize that the value of the integer N

(j)
ν0 , in

(7), does not depend on the choice of a2, therefore equality (8) will hold for all
unit a2 in the ring ZZΔ.

On the Number of Two-Weight Cyclic Codes 151

4 A Lower Bound

Let p, q, k and Δ be as before. Let γ be a primitive element of IFqk . For a
positive integer a, let ha(x) ∈ IFq[x] be the minimal polynomial of γa. Let n be
an integer such that n = λΔ, for some positive integer λ which divides q−1. Let
μ be the integer such that λμ = q − 1 and for now on, we are going to suppose
that μ is a unit in the ring ZZΔ. Let μ̃ be the inverse of μ in ZZ∗

Δ. If b is an
integer, with 0 ≤ b < n, then we define the cyclotomic coset modulo n over IFq

which contains b as (see for example [2, p. 197]):

Cb = {b, bq (mod n), bq2 (mod n), . . . , bqmb−1 (mod n)} ,

where x (mod n) is the remainder of x divided by n, and mb is the smallest
positive integer such that bqmb ≡ b (mod n). The subscript b is called the coset
representative modulo n.

Since μn = qk − 1, then the set U = {γμb : 0 ≤ b < n} contains all the zeros
of xn − 1 and therefore hμb(x)|(xn − 1) for all integer b with 0 ≤ b < n. That
is hμb(x) is the parity-check polynomial for an irreducible cyclic code of length
n. Taking into consideration all of this, we define the following set of cyclotomic
cosets modulo n:

S = {Cb : Cb is cyclotomic coset modulo n over IFq and gcd(b, Δ) = 1} .

Observe that gcd(q, Δ) = 1 and Δ|n, therefore the previous set is well defined
since it does not depend on the choice of the coset representative modulo n,
b, in each cyclotomic coset modulo n over IFq, Cb. Now we define the function
P : S → IFq[x], in such a way that P(Cb) = hμb(x). Since gcd(μb, Δ) = 1,
for each Cb ∈ S, then, in light of Theorem 1, we can see that hμb(x) is the
parity-check polynomial for a one-weight cyclic code of length n and dimension
k, therefore |Cb| = k for all cyclotomic coset Cb in S. Additionally, the number
of elements in S corresponds to the number of one-weight cyclic codes of length
n and dimension k, that is

|S| = |Im(P)| = δλ(gcd(n, q − 1))
λφ(Δ)

k
. (9)

We want to establish a lower bound for the number of two-weight cyclic codes
that are constructed by means of the direct sum of two one-weight cyclic codes
of length n and dimension k. That is, we want to establish a lower bound for
the cardinality of the following set

{{Cb1 , Cb2} ∈ 2S : Cb1 �= Cb2 and hμb1(x)hμb2 (x) is the parity-check
polynomial for a two-weight cyclic code} .

In order to establish such lower bound, the idea now is to take advantage of
Fact 1. In doing this it is important, first, to define a symmetric relation among
pairs of elements in S. The following definition and lemma take care of this.

152 G. Vega

Definition 1. Let p, q, k and Δ be as before. Let μ, μ̃ and S be as in the
previous discussion. For each pair of cyclotomic cosets Cb1 and Cb2 in S, we
will say that Cb1 is related to Cb2 , denoted Cb1 ∼ Cb2 , if and only if the coset
representatives b1 and b2, in this order, satisfy

μ̃b̃2(μb1 − μb2) ≡ pj − 1 (mod Δν) , for some integer j, with 1 ≤ pj < qk ,
(10)

where b̃2 is the inverse of b2 in ZZ∗
Δ and ν = gcd(μb1 − μb2, q − 1).

Since any element in a cyclotomic coset could be the coset representative, then
it is rather clear that it is necessary to prove that the previous relation is well
defined. The following lemma shows that “∼” is, indeed, well defined.

Lemma 3. Let p, q, k and Δ be as before. Let n, λ, μ, μ̃ and S be as in previous
discussion. Let Cb1 and Cb2 be in S, and let b̃1 and b̃2 be the inverses of b1 and
b2, respectively, in ZZ∗

Δ. Also let ν = gcd(μb1 − μb2, q − 1). Suppose that the
coset representatives b1 and b2 satisfy, in this order, (10). Then the following
three assertions are true:

a) b2 and b1 satisfy, in this order, (10). That is, for some integer j′, with 1 ≤
pj′ < qk, we have

μ̃b̃1(μb2 − μb1) ≡ pj′ − 1 (mod Δν) .

b) Let r be a positive integer and � any integer. If ν′ = gcd(μ(b1q
r + �n) −

μb2, q − 1) then ν′ = ν, and b1q
r + �n and b2 satisfy, in this order, (10).

That is, for some integer j′, with 1 ≤ pj′ < qk, we have

μ̃b̃2(μ(b1q
r+ �n)− μb2) ≡ pj′ − 1 (mod Δν) .

In addition, the integer j′ is uniquely determined by pj′ ≡ pjqr (mod Δν).
c) The relation ∼, in previous definition, is a well defined reflexive and sym-

metric relation.

Proof. If b1 and b2 satisfy (10), then b̃2b1 ≡ pj (mod Δ), which implies that
b̃2 ≡ b̃1p

j (mod Δ). Therefore b̃2 = b̃1p
j + �Δ for some integer �. By substi-

tuting b̃2 into (10), and since ν|(μb1 − μb2), we have μ̃b̃1(μb2 − μb1)pj ≡ 1 − pj

(mod Δν). Since qk ≡ 1 (mod Δν), then let j′, with 1 ≤ pj′ < qk, such that
pjpj′ ≡ 1 (mod Δν). By multiply both sides of μ̃b̃1(μb2 − μb1)pj ≡ 1 − pj

(mod Δν) by pj′ , we have Assertion a).
Clearly ν′ = gcd(μb1−μb2+μb1(qr−1)+μ�n, q−1) = ν, since μn = qk−1 and

since (q−1) divides both (qk−1) and (qr−1). Now, for the second part, observe
first that μ̃μb̃2b2 = 1 + �′Δ for some integer �′. Thus μ̃μb̃2b1 = 1 + μ̃b̃2(μb1 −
μb2) + �′Δ. Therefore

1 + μ̃b̃2(μ(b1q
r+ �n)− μb2) = μ̃μb̃2b1q

r+ μ̃μb̃2�n− �′Δ
= (1 + μ̃b̃2(μb1 − μb2) + �′Δ)qr+ μ̃μb̃2�n− �′Δ
= (1 + μ̃b̃2(μb1 − μb2))qr + μ̃μb̃2�n + �′Δ(qr− 1) .

On the Number of Two-Weight Cyclic Codes 153

Since qk ≡ 1 (mod Δν), then let j′ be the uniquely determined integer such
that 1 ≤ pj′ < qk and pj′ ≡ pjqr (mod Δν). Now ν|(qr− 1) and Δν|μn, thus
the conclusion is

1 + μ̃b̃2(μ(b1q
r+ �n)− μb2) ≡ (1 + μ̃b̃2(μb1q − μb2))qr (mod Δν)

≡ pjqr ≡ pj′ (mod Δν) ,

which in turn gives the proof of Assertion b).
Since any element b′ in a cyclotomic coset modulo n, Cb, is in the form b′ =

bqr+ �n, for some integer �, then a recursive application of Assertions a) and b)
shows that relation ∼ is well defined. The reflexive property is immediate for
(10) (taking pj = 1), whereas the symmetric property was already proved by
Assertion a). ��

Let B = {0, 1, 2, . . . , n−1} and I = {0, 1, 2, . . . , λ−1}. Now, we are going to take
a fixed b2 in set B, in such way that gcd(Δ, b2) = 1. Let b̃2, μ and μ̃ be as before,
and set a2 = μb2 and ã2 = μ̃b̃2. Also, for each i ∈ I, set a1(i) = pja2 + iμΔ and
ν(i) = gcd(a1(i)− a2, q − 1). Let w1, j, w

(j)
2 be as before. Now, for each pair of

integers, j and ν0, satisfying: 1 ≤ pj < q, ν0|(q − 1) and gcd((q − 1)/w1, p
j − 1)

divides (pj − 1)/w
(j)
2 , we define

B(j)
ν0

={b∈B : μ̃b̃2(μb− μb2) ≡ pj − 1 (mod Δν0) and gcd(μb− μb2, q − 1)=ν0}.

We are interested in obtaining the number of elements of B
(j)
ν0 . However, before

this, observe that Cb2 ∈ S and if b1 ∈ B
(j)
ν0 , then b1 ≡ pjb2 (mod Δ), so

gcd(b1, Δ) = 1, since gcd(pj, Δ) = 1. Therefore Cb1 is also in S. On the other
hand, if b1 ≡ pjb2 (mod Δ) then, since n = λΔ, there must exists a uniquely
determined integer i ∈ I such that b1 ≡ pjb2 + iΔ (mod n), which implies
that pja2 + iμΔ = a1(i) ≡ μb1 (mod qk − 1), since μn = qk − 1. That is,
a1(i) = μb1 + �(qk − 1), for some integer �. But clearly (q − 1)|(qk − 1), thus
gcd(μb1 − μb2, q − 1) = ν(i). Additionally, since Δν0|(qk − 1), then b1 ∈ B

(j)
ν0 if

and only if ã2(a1(i)− a2) ≡ pj − 1 (mod Δν(i)). Therefore the main conclusion
is that for each b1 ∈ B, such that b1 ≡ pjb2 (mod Δ), there exists a uniquely
determined integer i ∈ I, in such way that b1 ∈ B

(j)
ν0 if and only if ã2(a1(i)−a2) ≡

pj−1 (mod Δν(i)) and ν(i) = ν0. Considering this, and equality (8) in Corollary
1, we can now say that

|B(j)
ν0
| = N (j)

ν0
= N

(j)
μd , (11)

where d = ν0/μ. Observe that integer d always divides λ.

Remark 4. By using the same notation, observe that if Cb1 ∼ Cb2 and if d = 1
(that is, if gcd(μb1 − μb2, q − 1) = μ), then Cb1 �= Cb2 , because if Cb1 = Cb2 ,
then ν0 = q − 1, which in turn implies that d = λ > 1, due to Remark 2.

Furthermore, we can still say something else about the sets B
(j)
ν0 :

154 G. Vega

Lemma 4. Let p, q, m and k be as before. By using the same notation and
hypothesis as in the previous discussion, let Cb1 ∈ S such that Cb1 ∼ Cb2 . Since
Cb1 ∼ Cb2 , then let ν0 = gcd(μb1 − μb2, q − 1) and j, with 1 ≤ pj < qk, such
that μ̃b̃2(μb1−μb2) ≡ pj− 1 (mod Δν0). Then there exist uniquely determined
integers b′1 and j′ such that b′1 ∈ Cb1 , 1 ≤ pj′ < q and b′1 ∈ B

(j′)
ν0 (and therefore

Cb′1 ∼ Cb2).

Proof. By using the division algorithm, let s and j′ be the two uniquely de-
termined integers such that j = ms + j′, with 0 ≤ j′ < m. On the other
hand, let r be the uniquely determined integer such that r + s ≡ 0 (mod k),
with 0 ≤ r < k. Now, let b′1 be the uniquely determined element in Cb1 such
that b′1 ≡ b1q

r (mod n). Since q = pm and qk ≡ 1 (mod Δν0), then clearly
pj′ ≡ pjqr (mod Δν0). Therefore, by means of Assertion b) in previous lemma,
we conclude that b′1 ∈ B

(j′)
ν0 . Finally by using the second part of the same asser-

tion, we can see that the integers b′1 and j′ do not depend on the choice of the
coset representative in Cb1 . ��
We observe from above that for each j′, with 0 ≤ j′ < m, there are exactly
k different choices for pairs (j, r), with 1 ≤ pj, qr < qk, such that pj′ ≡ pjqr

(mod Δν0). Therefore, if d is an integer such that d|λ, then, by virtue of the
previous lemma and equality (11), we have

|{b1 ∈ B : Cb1 ∼ Cb2 and gcd(μb1 − μb2, q − 1) = μd}| = k

m−1∑
j=0

N
(j)
μd .

But we already said that all the cyclotomic cosets modulo n, in S, have exactly
k elements, thus

|{Cb1 ∈ S : Cb1 ∼ Cb2 and gcd(μb1 − μb2, q − 1) = μd}| =
m−1∑
j=0

N
(j)
μd .

The previous equality and the fact that ∼ is reflexive, give us the proof of the
following:

Corollary 2. Let p, q, m and k be as before. Assume the same notation and
hypothesis as in the previous lemma and discussion. If Cb2 is in S, then

|{Cb1 ∈ S : Cb1 �= Cb2 and Cb1 ∼ Cb2}| =
m−1∑
j=0

∑
d|λ

N
(j)
μd − 1 .

Clearly, the “−1” term, in the previous equality, is due to the fact that we have
to subtract the reflexive instance: Cb2 ∼ Cb2 .

The following result establish, for some finite fields, a lower bound for the
number of two-weight cyclic codes with composite parity-check polynomials.

On the Number of Two-Weight Cyclic Codes 155

Theorem 3. Let p, q, m, k, Δ, w1, j, w
(j)
2 be as before. Let μ, λ and n be

integers such that λ > 1, μλ = q − 1 and n = λΔ. Assume that the finite field
IFq and the extension field IFqk are in such a way that gcd((q − 1)/w1, p

j − 1)
divides (pj− 1)/w

(j)
2 for each j, with 0 ≤ j < m. Then the number of two-weight

cyclic codes constructed as the direct sum of two different one-weight cyclic codes
of length n and dimension k is at least

δλ(gcd(n, q − 1))
λφ(Δ)

2k

⎛⎝m−1∑
j=0

∑
d|λ

N
(j)
μd − 1

⎞⎠ .

Additionally, the number of two-weight projective cyclic codes constructed as the
direct sum of two different one-weight cyclic codes of length n and dimension k
is at least

δλ(gcd(n, q − 1))
λφ(Δ)

2k

m−1∑
j=0

N (j)
μ .

Proof. The first part is a direct consequence of Theorem 2, Remark 1, Fact 1,
equality (9) and the previous corollary. For the projective part we also use the
Assertion d) of Theorem 2 and Remark 4 (in this context, Remark 4 says that
we do not have to subtract the reflexive instance for this part). ��

5 Some Examples

In this section we present some examples of the lower bound that was introduced
in Theorem 3.

Let p = 3, q = 9 and k = 3, thus m = 2, Δ = 91, φ(Δ) = φ(13) · φ(7) = 72
and w1 = w

(j)
2 = 1, for j = 0, 1. Clearly, the finite field IF9 and the extension

field IF729 satisfy that gcd((q − 1)/w1, p
j − 1) divides (pj − 1)/w

(j)
2 for each j,

with 0 ≤ j < 2.
If n = 182, then λ = 2 and μ = 4. Now, if j = 0 then, by using (2), we

have x0 = 3, z0 = 0 and Z = {z0, z0 + μ, z0 + 2μ, . . . , z0 + (λ − 1)μ} = {0, 4},
therefore, by means of (7), we obtain N

(0)
4 = N

(0)
8 = 1. On the other hand, if

j = 1 then, z0 = −6 and Z = {−6,−2}, therefore N
(1)
4 = N

(1)
8 = 0. By using

Theorem 3 the conclusion is that there are at least 24 two-weight cyclic codes,
over IF9, constructed as a direct sum of two different one-weight cyclic codes of
length 182 and dimension 3. Additionally, all these 24 two-weight cyclic codes
are projective. By means of an exhaustive search, with the help of a computer
program, we can see that 24 is exactly the number of two-weight cyclic codes,
over IF9, constructed as a direct sum of two different one-weight cyclic codes of
length 182 and dimension 3, and also, we can see that all of them are projective.

If n = 364, then λ = 4 and μ = 2. Now, if j = 0 then, by using (2), we have
x0 = 3, z0 = 0 and Z = {z0, z0 + μ, z0 + 2μ, . . . , z0 + (λ − 1)μ} = {0, 2, 4, 6},
therefore, by means of (7), we obtain N

(0)
4 = N

(0)
8 = 1 and N

(0)
2 = 2. On

156 G. Vega

the other hand, if j = 1 then, z0 = −6 and Z = {−6,−4,−2, 0}, therefore
N

(1)
4 = N

(1)
8 = 0 and N

(1)
2 = 2. By using Theorem 3 the conclusion is that there

are at least 240 two-weight cyclic codes, over IF9, constructed as a direct sum of
two different one-weight cyclic codes of length 364 and dimension 3. Additionally,
192 of these 240 are projective codes. By means of an exhaustive search we can see
that 240 is exactly the number of two-weight cyclic codes, over IF9, constructed as
a direct sum of two different one-weight cyclic codes of length 364 and dimension
3, and also, we can see that 192 of these 240 are projective codes.

If n = 728, then λ = 8 and μ = 1. Now, if j = 0 then, by using (2), we
have x0 = 3, z0 = 0 and Z = {z0, z0 + μ, z0 + 2μ, . . . , z0 + (λ − 1)μ} =
{0, 1, 2, 3, 4, 5, 6, 7}, therefore, by means of (7), we obtain N

(0)
4 = N

(0)
8 = 1,

N
(0)
2 = 2 and N

(0)
1 = 4. On the other hand, if j = 1 then, z0 = −6 and

Z = {−6,−5,−4,−3,−2,−1, 0, 1}, therefore N
(1)
4 = N

(1)
8 = 0, N

(1)
2 = 2 and

N
(1)
1 = 4. By using Theorem 3 the conclusion is that there are at least 1248

two-weight cyclic codes, over IF9, constructed as a direct sum of two different
one-weight cyclic codes of length 728 and dimension 3. Additionally, 768 of these
1248 are projective codes. By means of an exhaustive search we can see that 1248
is exactly the number of two-weight cyclic codes, over IF9, constructed as a direct
sum of two different one-weight cyclic codes of length 728 and dimension 3, and
also, we can see that 768 of these 1248 are projective codes.

6 Conclusion

We have established, for some finite fields, a lower bound for the number of
two-weight (projective or not projective) cyclic codes constructed as direct sum
of two different one-weight cyclic codes of the same length and dimension. This
lower bound show that there is, indeed, an infinite class of two-weight cyclic
codes constructed as direct sum of two different one-weight cyclic codes. For
some examples, we saw that such lower bound coincide with the exact number
of such codes. In fact, we believe that such coincidence, in these examples, is
something more than a fortunate choice.

References

1. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge Univ. Press, Cambridge (1983)
2. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, Amster-

dam. North-Holland, The Netherlands (1977)
3. Vega, G.: Determining the Number of One-weight Cyclic Codes when Length and

Dimension are Given. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547,
pp. 284–293. Springer, Heidelberg (2007)

4. Vega, G.: Two-weight cyclic codes constructed as the direct sum of two one-weight
cyclic codes, Finite Fields Appl. (in press, 2008), doi:10.1016/j.ffa.2008.01.002

5. Wolfmann, J.: Are 2-Weight Projective Cyclic Codes Irreducible? IEEE Trans. In-
form. Theory. 51, 733–737 (2005)

On Field Size and Success Probability in

Network Coding

Olav Geil1, Ryutaroh Matsumoto2, and Casper Thomsen1

1 Department of Mathematical Sciences, Aalborg University, Denmark
olav@math.aau.dk,

caspert@math.aau.dk
2 Department of Communications and Integrated Systems,

Tokyo Institute of Technology, Japan
ryutaroh@rmatsumoto.org

Abstract. Using tools from algebraic geometry and Gröbner basis the-
ory we solve two problems in network coding. First we present a method
to determine the smallest field size for which linear network coding is
feasible. Second we derive improved estimates on the success probabil-
ity of random linear network coding. These estimates take into account
which monomials occur in the support of the determinant of the product
of Edmonds matrices. Therefore we finally investigate which monomials
can occur in the determinant of the Edmonds matrix.

Keywords: Distributed networking, linear network coding, multicast,
network coding, random network coding.

1 Introduction

In a traditional data network, an intermediate node only forwards data and
never modifies them. Ahlswede et al. [1] showed that if we allow intermediate
nodes to process their incoming data and output modified versions of them then
maximum throughput can increase, and they also showed that the maximum
throughput is given by the minimum of maxflows between the source node and
a sink node for single source multicast on an acyclic directional network. Such
processing is called network coding. Li et al. [10] showed that computation of lin-
ear combinations over a finite field by intermediate nodes is enough for achieving
the maximum throughput. Network coding only involving linear combinations
is called linear network coding. The acyclic assumption was later removed by
Koetter and Médard [9].

In this paper we shall concentrate on the error-free, delay-free multisource
multicast network connection problem where the sources are uncorrelated. How-
ever, the proposed methods described can be generalized to deal with delays as
in [7]. The only exception is the description in Section 7.

Considering multicast, it is important to decide whether or not all receivers
(called sinks) can recover all the transmitted information from the senders (called

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 157–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 O. Geil, R. Matsumoto, and C. Thomsen

sources). It is also important to decide the minimum size q of the finite field Fq

required for linear network coding.
Before using linear network coding we have to decide coefficients in linear

combinations computed by intermediate nodes. When the size q of a finite field
is large, it is shown that random choice of coefficients allows all sinks to recover
the original transmitted information with high probability [7]. Such a method
is called random linear network coding and the probability is called success
probability. As to random linear network coding the estimation or determination
of the success probability is very important. Ho et al. [7] gave a lower bound on
the success probability.

In their paper [9], Koetter and Médard introduced an algebraic geometric
point view on network coding. As explained in [3], computational problems in
algebraic geometry can often be solved by Gröbner bases. In this paper, we shall
show that the exact computation of the minimum q can be made by applying the
division algorithm for multivariate polynomials, and we will show that improved
estimates for the success probability can be found by applying the footprint
bound from Gröbner basis theory. These results introduce a new approach to
network coding study. As the improved estimates take into account which mono-
mials occur in the support of the determinant of a certain matrix [7] we study
this matrix in details at the end of the paper.

2 Preliminary

We can determine whether or not all sinks can recover all the transmitted in-
formation by the determinant of some matrix [7]. We shall review the definition
of such determinant. Let G = (V, E) be an directed acyclic graph with possi-
ble parallel edges that represents the network topology. The set of source and
sink nodes is denoted by S and T respectively. Assume that the source nodes S
together get h symbols in Fq per unit time and try to send them.

Identify the edges in E with the integers 1, . . . , |E|. For an edge j = (u, v) we
write head(j) = v and tail(j) = u. We define the |E| × |E| matrix F = (fi,j)
where fi,j is a variable if head(i) = tail(j) and fi,j = 0 otherwise. The variable
fi,j is the coding coefficient from i to j.

Index h symbols in Fq sent by S by 1, . . . , h. We also define an h×|E| matrix
A = (ai,j) where ai,j is a variable if the edge j is an outgoing edge from the
source s ∈ S sending the i-th symbol and ai,j = 0 otherwise. Variables ai,j

represent how the source nodes send information to their outgoing edges.
Let X(l) denote the l-th symbol generated by the sources S, and let Y (j)

denote the information sent along edge j. The model is described by the following
relation

Y (j) =
h∑

i=1

ai,jX(i) +
∑

i:head(i)=tail(j)

fi,jY (i) .

For each sink t ∈ T define an h × |E| matrix Bt whose (i, j) entry bt,i,j is
a variable if head(j) = t and equals 0 otherwise. The index i refers to the i-th

On Field Size and Success Probability in Network Coding 159

symbol sent by one of the sources. Thereby variables bt,i,j represent how the sink
t process the received data from its incoming edges.

The sink t records the vector

b(t) =
(
b
(t)
1 , . . . , b

(t)
h

)
where

b
(t)
i =

∑
j:head(j)=t

bt,i,jY (j) .

We now recall from [7] under which conditions all informations sent by the
sources can always be recovered at all sinks. As in [7] we define the Edmonds
matrix Mt for t ∈ T by

Mt =
(

A 0
I − F BT

t

)
. (1)

Define the polynomial P by
P =

∏
t∈T

|Mt| . (2)

P is a multivariate polynomial in variables fi,j , ai,j and bt,i,j. Assigning a value
in Fq to each variable corresponds to choosing a coding scheme. Plugging the
assigned values into P gives an element k ∈ Fq. The following theorem from [7]
tells us when the coding scheme can be used to always recover the information
generated at the sources S at all sinks in T .

Theorem 1. Let the notation and the network coding model be as above. As-
sume a coding scheme has been chosen by assigning values to the variables fi,j,
ai,j and bt,i,j. Let k be the value found by plugging the assigned values into P .
Every sink t ∈ T can recover from b(t) the informations X(1), . . . , X(h) no
matter what they are, if and only if k �= 0 holds.

Proof. See [7]. ��

3 Computation of the Minimum Field Size

We shall study computation of the minimum symbol size q. For this purpose we
will need the division algorithm for multivariate polynomials [3, Sec. 2.3] to pro-
duce the remainder of a polynomial F (X1, . . . , Xn) modulo (Xq

1 −X1, . . . , X
q
n−

Xn) (this remainder is independent of the choice of monomial ordering). We
adapt the standard notation for the above remainder which is

F (X1, . . . , Xn) rem (Xq
1 −X1, . . . , X

q
n −Xn) .

The reader unfamiliar with the division algorithm can think of the above remain-
der of F (X1, . . . , Xn) as the polynomial produced by the following procedure.
As long as we can find an Xi such that Xq

i divides some term in the polynomial
under consideration we replace the factor Xq

i with Xi wherever it occurs. The
process continues until the Xi-degree is less than q for all i = 1, . . . , n. It is clear
that the above procedure can be efficiently implemented.

160 O. Geil, R. Matsumoto, and C. Thomsen

Proposition 1. Let F (X1, . . . , Xn) be an n-variate polynomial over Fq. There
exists an n-tuple (x1, . . . , xn) ∈ Fn

q such that F (x1, . . . , xn) �= 0 if and only if

F (X1, . . . , Xn) rem (Xq
1 −X1, . . . , X

q
n −Xn) �= 0 .

Proof. As aq = a for all a ∈ Fq it holds that F (X1, . . . , Xn) evaluates to the
same as R(X1, . . . , Xn) := F (X1, . . . , Xn) rem (Xq

1 −X1, . . . , X
q
n−Xn) in every

(x1, . . . , xn) ∈ Fn
q . If R(X1, . . . , Xn) = 0 therefore F (X1, . . . , Xn) evaluates

to zero for every choice of (x1, . . . , xn) ∈ Fn
q . If R(X1, . . . , Xn) is nonzero we

consider it first as a polynomial in Fq(X1, . . . , Xn−1)[Xn] (that is, a polynomial
in one variable over the quotient field Fq(X1, . . . , Xn−1)). But the Xn-degree is
at most q − 1 and therefore it has at most q − 1 zeros. We conclude that there
exists an xn ∈ Fq such that R(X1, . . . , Xn−1, xn) ∈ Fq[X1, . . . , Xn−1] is nonzero.
Continuing this way we find (x1, . . . , xn) such that R(x1, . . . , xn) and therefore
also F (x1, . . . , xn) is nonzero. ��
From [7, Th. 2] we know that for all prime powers q greater than |T | linear
network coding is possible. It is now straightforward to describe an algorithm
that finds the smallest field Fq of prescribed characteristic p for which linear
network coding is feasible. We first reduce the polynomial P from (2) modulo
the prime p. We observe that although P is a polynomial in all the variables
ai,j , bt,i,j , fi,j the variable bt,i,j appears at most in powers of 1. This is so as it
appears at most in a single entry in Mt and does not appear elsewhere. Therefore
Fq can be used for network coding if P rem p does not reduce to zero modulo the
polynomials aq

i,j−ai,j, f q
i,j−fi,j. To decide the smallest field Fq of characteristic

p for which network coding is feasible we try first Fq = Fp. If this does not work
we then try Fp2 and so on. To find an Fq that works we need at most to try
�logp(|T |)� different fields as we know that linear network coding is possible
whenever q > |T |.

Note that once a field Fq is found such that the network connection problem
is feasible the last part of the proof of Proposition 1 describes a simple way of
deciding coefficients (x1, . . . , xn) ∈ Fn

q that can be used for network coding.
From [4, Sec. 7.1.3] we know that it is an NP-hard problem to find the mini-

mum field size for linear network coding. Our findings imply that it is NP-hard
to find the polynomial P in (2).

4 Computation of the Success Probability of Random
Linear Network Coding

In random linear network coding we from the beginning fix for a collection

K ⊆ {1, . . . , h} × {1, . . . , |E|}

the ai,j ’s with (i, j) ∈ K and also we fix for a collection

J ⊆ {1, . . . , |E|} × {1, . . . , |E|}

On Field Size and Success Probability in Network Coding 161

the fi,j’s with (i, j) ∈ J . This is done in a way such that there exists a solution to
the network connection problem with the same values for these fixed coefficients.
A priori of course we let ai,j = 0 if the edge j is not emerging from the source
sending information i, and also a priori we of course let fi,j = 0 if j is not an
adjacent downstream edge of i. Besides these a priori fixed values there may
be good reasons for also fixing other coefficients ai,j and fi,j [7]. If for example
there is only one upstream edge i adjacent to j we may assume fi,j = 1. All the
ai,j ’s and fi,j ’s which have not been fixed at this point are then chosen randomly
and independently. All coefficients are to be elements in Fq. If a solution to the
network connection problem exists with the ai,j ’s and the fi,j ’s specified, it is
possible to determine values of bt,i,j at the sinks such that a solution to the
network connection problem is given. Let μ be the number of variables ai,j and
fi,j chosen randomly. Call these variables X1, . . . , Xμ. Consider the polynomial
P in (2) and let P̃ be the polynomial made from P by plugging in the fixed values
of the ai,j ’s and the fixed values of the fi,j’s (calculations taking place in Fq).
Then P̃ is a polynomial in X1, . . . , Xμ. The coefficients of P̃ are polynomials in
the bt,i,j’s over Fq. Finally, define

P̂ := P̃ rem (Xq
1 −X1, . . . , X

q
μ −Xμ) .

The success probability of random linear network coding is the probability that
the random choice of coefficients will lead to a solution of the network connection
problem1 as in Section 2. That is, the probability is the number

|{(x1, . . . , xμ) ∈ Fμ
q |P̃ (x1, . . . , xμ) �= 0}|
qμ

=
|{(x1, . . . , xμ) ∈ Fμ

q |P̂ (x1, . . . , xμ) �= 0}|
qμ

. (3)

To see the first result observe that for fixed (x1, . . . , xμ) ∈ Fμ
q , P̃ (x1, . . . , xμ)

can be viewed as a polynomial in the variables bt,i,j’s with coefficients in Fq and
recall that the bt,i,j’s occur in powers of at most 1. Therefore, if P̃ (x1, . . . , xμ) �=
0, then by Proposition 1 it is possible to choose the bt,i,j’s such that if we plug
them into P̃ (x1, . . . , xμ) then we get nonzero. The last result follows from the
fact that P̃ (x1, . . . , xμ) = P̂ (x1, . . . , xμ) for all (x1, . . . , xμ) ∈ Fμ

q . In this section
we shall present a method to estimate the success probability using Gröbner
basis theoretical methods.

We briefly review some basic definitions and results of Gröbner bases. See
[3] for a more detailed exposition. Let M(X1, . . . , Xn) be the set of monomi-
als in the variables X1, . . . , Xn. A monomial ordering ≺ is a total ordering on
M(X1, . . . , Xn) such that

L ≺M =⇒ LN ≺MN

1 This corresponds to saying that each sink can recover the data at the maximum rate
promised by network coding.

162 O. Geil, R. Matsumoto, and C. Thomsen

holds for all monomials L, M , N ∈M(X1, . . . , Xn) and such that every nonempty
subset ofM(X1, . . . , Xn) has a unique smallest element with respect to ≺. The
leading monomial of a polynomial F with respect to ≺, denoted by lm(F), is the
largest monomial in the support of F . Given a polynomial ideal I and a monomial
ordering the footprint Δ≺(I) is the set of monomials that cannot be found as
leading monomials of any polynomial in I. The following proposition explains
our interest in the footprint (for a proof of the proposition see [2, Pro. 8.32]).

Proposition 2. Let F be a field and consider the polynomials F1, . . . , Fs ∈
F[X1, . . . , Xn]. Let I = 〈F1, . . . , Fs〉 ⊆ F[X1, . . . , Xn] be the ideal generated by
F1, . . . , Fs. If Δ≺(I) is finite then the number of common zeros of F1, . . . , Fs in
the algebraic closure of F is at most equal to |Δ≺(I)|.
Proposition 2 is known as the footprint bound. It has the following corollary.

Corollary 1. Let F ∈ F[X1, . . . , Xn] where F is a field containing Fq. Fix a
monomial ordering and let

Xj1
1 · · ·Xjn

n = lm
(
F rem (Xq

1 −X1, . . . , X
q
n −Xn)

)
.

The number of zeros of F over Fq is at most equal to

qn −
n∏

v=1

(q − jv) . (4)

Proof. We have

Δ≺(〈F, Xq
1 −X1, . . . , X

q
n −Xn〉)

⊆ Δ≺(〈lm(F rem (Xq
1 −X1, . . . , X

q
n −Xn)), Xq

1 , . . . , Xq
n〉)

and the size of the latter set equals (4). The result now follows immediately from
Proposition 2. ��
Theorem 2. Let as above P̃ be found by plugging into P some fixed values for
the variables ai,j, (i, j) ∈ K, and by plugging into P some fixed values for the
variables fi,j, (i, j) ∈ J , and by leaving the remaining μ variables flexible. As-
sume as above that there exists a solution to the network connection problem with
the same values for these fixed coefficients. Denote by X1, . . . , Xμ the variables to
be chosen by random and define P̂ := P̃ rem (Xq

1−X1, . . . , X
q
μ−Xμ). (Note that

if q > |T | then P̂ = P̃). Consider P̂ as a polynomial in the variables X1, . . . , Xμ

and let ≺ be any fixed monomial ordering. Writing Xj1
1 · · ·Xjμ

μ = lm(P̂) the
success probability is at least

q−μ

μ∏
v=1

(q − jv) . (5)

As a consequence the success probability is in particular at least

q−μ min
{ μ∏

i=1

(q − si)
∣∣∣∣Xs1

1 · · ·Xsμ
μ is a monomial in the support of P̂

}
. (6)

On Field Size and Success Probability in Network Coding 163

Proof. Let F be the quotient field Fq(X1, . . . , Xμ). The result in (5) now follows
by applying Corollary 1 and (3). As the leading monomial of P̃ is of course a
monomial in the support of P̃ (6) is smaller or equal to (5). ��
Remark 1. The condition in Theorem 2 that there exists a solution to the net-
work connection problem with the coefficients corresponding to K and J being
as specified is equivalent to the condition that P̂ �= 0.

We conclude this section by mentioning without a proof that Gröbner basis
theory tells us that the true success probability can be calculated as

q−μ
(
qμ − |Δ≺(〈P̃ , Xq

1 −X1, . . . , X
q
μ −Xμ〉)|

)
.

This observation is however of little value as it seems very difficult to compute
the footprint

Δ≺(〈P̃ , Xq
1 −X1, . . . , X

q
μ −Xμ〉)

due to the fact that μ is typically a very high number.

5 The Bound by Ho et al.

In [7] Ho et al. gave a lower bound on the success probability in terms of the
number of edges j with associated random coefficients2 {ai,j, fl,j}. Letting η be
the number of such edges [7, Th. 2] tells us that if q > |T | and if there exists a
solution to the network connection problem with the same values for the fixed
coefficients, then the success probability is at least

pHo =
(

q − |T |
q

)η

. (7)

The proof in [7] of (7) relies on two lemmas of which we only state the first one.

Lemma 1. Let η be defined as above. The determinant polynomial of Mt has
maximum degree η in the random variables {ai,j , fl,j} and is linear in each of
these variables.

Proof. See [7, Lem. 3]. Alternatively the proof can be derived as a consequence
of Theorem 3 in Section 7. ��
Recall, that the polynomial P in (2) is the product of the determinants |Mt|,
t ∈ T . Lemma 1 therefore implies that the polynomial P̃ has at most total
degree equal to |T |η and that no variable appears in powers of more than |T |.
The assumption q > |T | implies P̂ = P̃ which makes it particular easy to see that
the same of course holds for P̂ . Combining this observation with the following
lemma shows that the numbers in (5) and (6) are both at least as large as the
number (7).
2 We state Ho et al.’s bound only in the case of delay-free acyclic networks.

164 O. Geil, R. Matsumoto, and C. Thomsen

Lemma 2. Let η, |T |, q ∈ N, |T | < q be some fixed numbers. Let μ, x1, . . . , xμ ∈
N0 satisfy

0 ≤ x1 ≤ |T |, . . . , 0 ≤ xμ ≤ |T |
and x1 + · · ·+ xμ ≤ |T |η. The minimal value of

μ∏
i=1

(
q − xi

q

)
(taken over all possible values of μ, x1, . . . , xμ) is(

q − |T |
q

)η

.

Proof. Assume μ and x1, . . . , xμ are chosen such that the expression attains its
minimal value. Without loss of generality we may assume that

x1 ≥ x2 ≥ · · · ≥ xμ

holds. Clearly, x1 + · · ·+ xμ = |T |η must hold. If xi < |T | and xi+1 > 0 then

(q − xi)(q − xi+1) > (q − (xi + 1))(q − (xi+1 − 1))

which cannot be the case. So x1 = · · · = xη = |T |. The remaining xj ’s if any all
equal zero. ��

6 Examples

In this section we apply the methods from the previous sections to two concrete
networks. We will see that the estimate on the success probability of random
linear network coding that was described in Theorem 2 can be considerably
better than the estimate described in [7, Th. 2]. Also we will apply the method
from Section 3 to determine the smallest field of characteristic two for which
network coding can be successful.

As random linear network coding is assumed to take place at the nodes in a
decentralized manner, one natural choice is to set fi,j = 1 whenever the indegree
of the end node of edge i is one and j is the downstream edge adjacent to i.
Clearly, if j is not a downstream edge adjacent to i we set fi,j = 0. Whenever
none of the above is the case we may choose fi,j randomly. Also if there is only
one source and the outdegree of the source is equal to the number of symbols to
be send we may enumerate the edges from the source by the numbers 1, . . . , h
and set ai,j = 1 if 1 ≤ i = j ≤ h and set ai,j = 0 otherwise. This strategy can
be generalized also to deal with the case of more sources. In the following two
examples we will choose the variables in the manner just described. The network
in the first example is taken from [4, Ex. 3.1] whereas the network in the second
example is new.

On Field Size and Success Probability in Network Coding 165

v1

v2 v3

v4

v5

v6 v7

v8 v9

v10

v11

v12 v13

1 2

3

4

5

67

8 9

10 11

12

13

14

1516

17 18

Fig. 1. The network from Example 1

Example 1. Consider the delay-free and acyclic network in Figure 1. There is
one sender v1 and two receivers v12 and v13. The min-cut max-flow number is
two for both receivers so we assume that two independent random processes
emerge from sender v1. We consider in this example only fields of characteristic
2. Following the description preceding the example we set a1,1 = a2,2 = 1 and
ai,j = 0 in all other cases. Also we let fi,j = 1 except

f3,7, f5,7, f4,10, f8,10, f9,11, f6,11, f12,16, f14,16

which we choose by random. As in the previous sections we consider bt,i,j as
fixed but unknown to us. The determinant polynomial becomes

P̃ = (b2c2e2gh + c2f2gh + a2d2f2gh)Q ,

where

a = f3,7 b = f5,7 c = f4,10 d = f8,10

e = f9,11 f = f6,11 g = f12,16 h = f14,16

and Q = |B′
v12
| |B′

v13
|. Here, B′

v12
respectively B′

v13
is the matrix consisting of

the nonzero columns of Bv12 respectively the nonzero columns of Bv14 . Restrict-
ing to fields Fq of size at least 4 we have P̂ = P̃ and we can therefore immediately

166 O. Geil, R. Matsumoto, and C. Thomsen

apply the bounds in Theorem 2. Applying (6) we get the following lower bound
on the success probability

Pnew 2(q) =
(q − 2)3(q − 1)2

q5
.

Choosing as monomial ordering the lexicographic ordering ≺lex with

a ≺lex b ≺lex d ≺lex e ≺lex g ≺lex h ≺lex f ≺lex c

the leading monomial of P̃ becomes c2f2gh and therefore from (5) we get the
following lower bound on the success probability

Pnew 1(q) =
(q − 2)2(q − 1)2

q4
.

For comparison the bound (7) from [7] states that the success probability is at
least

PHo(q) =
(q − 2)4

q4
.

We see that Pnew 1 exceeds PHo with a factor (q − 1)2/(q − 2)2, which is larger
than 1. Also Pnew 2 exceeds PHo. In Table 1 we list values of Pnew 1(q), Pnew 2(q)
and PHo(q) for various choices of q.

Table 1. From Example 1: Estimates on the success probability

q 4 8 16 32 64
Pnew 1(q) 0.140 0.430 0.672 0.893 0.909
Pnew 2(q) 0.703 × 10−1 0.322 0.588 0.773 0.880

PHo(q) 0.625 × 10−1 0.316 0.586 0.772 0.880

We next consider the field F2. We reduce P̃ modulo (a2 − a, . . . , h2 − h) to
get

P̂ = (bcegh + cfgh + adfgh)Q .

From (6) we see that the success probability of random network coding is at
least 2−5. Choosing as monomial ordering the lexicographic ordering described
above (5) tells us that the success probability is at least 2−4. For comparison
the bound (7) does not apply as we do not have q > |T |. It should be mentioned
that for delay-free acyclic networks the network coding problem is solvable for
all choices of q ≥ |T | [8] and [11]. From this fact one can only conclude that
the success probability is at least 2−8 (8 being the number of coefficients to be
chosen by random).

Example 2. Consider the network in Figure 2. The sender v1 generates 3 in-
dependent random processes. The vertices v11, v12 and v13 are the receivers.

On Field Size and Success Probability in Network Coding 167

v1

v2 v3 v4

v5 v6 v7

v8 v9 v10

v11 v12 v13

1 2 3

4
5

6

7
8

9 10
11

1213 14 15

16

17

18

19

2021

22

Fig. 2. The network from Example 2

We will apply network coding over various fields of characteristic two. We start
by considering random linear network coding over fields of size at least 4. As
4 > |T | = 3 we know that this can be done successfully.

We set a1,1 = a2,2 = a3,3 = 1 and ai,j = 0 in all other cases. We let fi,j = 1
except f4,13, f7,13, f5,14, f8,14, f10,14, f9,15, f11,15, which we choose by random. As
in the last section we consider bt,i,j as fixed but unknown to us. Therefore P̃ = P̂
is a polynomial in the seven variables f4,13, f7,13, f5,14, f8,14, f10,14, f9,15, f11,15.
The determinant polynomial becomes

P̂ = (abcdefg + abce2f2 + b2c2efg)Q ,

where

a = f4,13 b = f5,14 c = f7,13 d = f8,14

e = f9,15 f = f10,14 g = f11,15

and Q = |B′
v11
| |B′

v12
| |B′

v13
|. Here, B′

v11
respectively B′

v12
respectively B′

v13
is

the matrix consisting of the nonzero columns of Bv11 respectively the nonzero
columns of Bv12 respectively the nonzero columns of Bv13 . Choosing a lexico-
graphic ordering with d being larger than the other variables and applying (5)
we get that the success probability is at least

Pnew 1(q) =
(q − 1)7

q7
.

Applying (6) we see that the success probability is at least

Pnew 2(q) =
(q − 1)3(q − 2)2

q5
.

168 O. Geil, R. Matsumoto, and C. Thomsen

For comparison (7) tells us that success probability is at least

PHo(q) =
(q − 3)3

q3
.

Both bound (5) and bound (6) exceed (7) for all values of q ≥ 4. In Table 2 we
list Pnew 1(q), Pnew 2(q) and PHo(q) for various values of q.

Table 2. From Example 2: Estimates on the success probability

q 4 8 16 32 64
Pnew 1(q) 0.133 0.392 0.636 0.800 0.895
Pnew 2(q) 0.105 0.376 0.630 0.799 0.895

PHo(q) 0.156 × 10−1 0.244 0.536 0.744 0.865

We next consider the field F2. We reduce P̃ modulo (a2−a, . . . , g2−g) to get

P̂ = (abcdefg + abcef + bcefg)Q .

From (6) we see that the success probability of random network coding is at
least 2−7. Choosing a proper monomial ordering we get from (5) that the success
probability is at least 2−5. For comparison neither [7], [8], nor [11] tells us that
linear network coding is possible.

7 The Topological Meaning of |Mt|
Recall from Section 5 that Ho et al.’s bound (7) relies on the rather rough
Lemma 1. The following theorem gives a much more precise description of which
monomials can occur in the support of P and P̃ by explaining exactly which
monomials can occur in |Mt|. Thereby the theorem gives some insight into when
the bounds (5) and (6) are much better than the bound (7). The theorem states
that if K is a monomial in the support of |Mt| then it is the product of ai,j ’s,
fi,j ’s and bt,i,j’s related to h edge disjoint paths P1, . . . , Ph that originate in the
senders and end in receiver t.

Theorem 3. Consider a delay-free acyclic network. If K is a monomial in the
support of the determinant of Mt then it is of the form K1 · · ·Kh where

Ku = a
u,l

(u)
1

f
l
(u)
1 ,l

(u)
2

f
l
(u)
2 ,l

(u)
3
· · · f

l
(u)
su−1,l

(u)
su

b
t,vu,l

(u)
su

for u = 1, . . . , h. Here, {v1, . . . , vh} = {1, . . . , h} holds and l
(1)
1 , . . . , l

(h)
h respec-

tively l
(1)
s1 , . . . , l

(h)
sh are pairwise different. Further

f
l
(u1)
i ,l

(u1)
i+1
�= f

l
(u2)
j ,l

(u2)
j+1

unless u1 = u2 and i = j hold. In other words K corresponds to a product of h
edge disjoint paths.

On Field Size and Success Probability in Network Coding 169

s

v1 v2

v3

v4

t1 t2

1

4

2

5

3 67

8 9

Fig. 3. The butterfly network

Proof. A proof can be found in the appendix. ��
We illustrate the theorem with an example.

Example 3. Consider the butterfly network in Figure 3. A monomial K is in the
support of |Mt1 | if and only if it is in the support of the determinant of

Nt1 = (ni,j) =
[
I + F BT

t1
A 0

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 f1,3 f1,4 0 0 0 0 0 0 0
0 1 0 0 f2,5 f2,6 0 0 0 0 0
0 0 1 0 0 0 0 0 0 bt1,1,3 bt1,2,3

0 0 0 1 0 0 f4,7 0 0 0 0
0 0 0 0 1 0 f5,7 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 f7,8 f7,9 0 0
0 0 0 0 0 0 0 1 0 bt1,1,8 bt1,2,8

0 0 0 0 0 0 0 0 1 0 0
a1,1 a1,2 0 0 0 0 0 0 0 0 0
a2,1 a2,2 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By inspection we see that the monomial

K = a1,1a2,2bt1,1,3bt1,2,8f7,8f5,7f2,5f1,3

is in the support of |Nt1 |. We can write K = K1K2 where

K1 = a1,1f1,3bt1,1,3 and K2 = a2,2f2,5f5,7f7,8bt1,2,8 .

This is the description guaranteed by Theorem 3. To make it easier for the reader
to follow the proof of Theorem 3 in the appendix we now introduce some of the
notations to be used there. By inspection the monomial K can be written

K =
11∏

i=1

ni,p(i)

170 O. Geil, R. Matsumoto, and C. Thomsen

where the permutation p is given by

p(1) = 3 p(2) = 5 p(3) = 10 p(4) = 4 p(5) = 7 p(6) = 6
p(7) = 8 p(8) = 11 p(9) = 9 p(10) = 1 p(11) = 2

Therefore if we index the elements in {1, . . . , 11} by

i1 = 10 i2 = 1 i3 = 3 i4 = 11 i5 = 2 i6 = 5
i7 = 7 i8 = 8 i9 = 4 i10 = 6 i11 = 9

then we can write

K1 = ni1,p(i1)ni2,p(i2)ni3,p(i3)

K2 = ni4,p(i4)ni5,p(i5)ni6,p(i6)ni7,p(i7)ni8,p(i8)

and we have
ni9,p(i9) = ni10,p(i10) = ni11,p(i11) = 1

corresponding to the fact p(i9) = i9, p(i10) = i10 and p(i11) = i11.

Remark 2. The procedures described in the proof of Theorem 3 can be reversed.
This implies that there is a bijective map between the set of edge disjoint paths
P1, . . . , Ph in Theorem 3 and the set of monomials in |Mt|.
Theorem 3 immediately applies to the situation of random network coding if
we plug into the ai,j ’s and into the ft,i,j ’s on the paths P1, . . . , Ph the fixed
values wherever such are given. Let as in Lemma 1 η be the number of edges
for which some coefficients ai,j , fi,j are to be chosen by random. Considering
the determinant as a polynomial in the variables to be chosen by random with
coefficients in the field of rational expressions in the bt,i,j ’s we see that no mono-
mial can contain more than η variables and that no variable occurs more than
once. This is because the paths P1, . . . , Ph are edge disjoint. Hence, Lemma 1 is
a consequence of Theorem 3.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful sug-
gestions.

References

1. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46(4), 1204–1206 (2000)

2. Becker, T., Weispfenning, V.: Gröbner Bases - A Computational Approach to Com-
mutative Algebra. Springer, Berlin (1993)

3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer,
Berlin (1996)

On Field Size and Success Probability in Network Coding 171

4. Fragouli, C., Soljanin, E.: Network Coding Fundamentals. In: Foundations and
Trends in Networking, vol. 2(1). now Publishers Inc., Hanover (2007)

5. Geil, O.: On codes from norm-trace curves. Finite Fields and their Applica-
tions 9(3), 351–371 (2003)

6. Ho, T., Karger, D.R., Médard, M., Koetter, R.: Network Coding from a Network
Flow Perspective. In: Proceedings. IEEE International Symposium on Information
Theory, Yokohama, Japan, July 2003, p. 441 (2003)

7. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A
Random Linear Network Coding Approach to Multicast. IEEE Transactions on
Information Theory 52(10), 4413–4430 (2006)

8. Jaggi, S., Chou, P.A., Jain, K.: Low Complexity Algebraic Multicast Network
Codes. In: Proceedings. IEEE International Symposium on Information Theory,
Yokohama, Japan, July 2003, p. 368 (2003)

9. Koetter, R., Médard, M.: An Algebraic Approach to Network Coding. IEEE/ACM
Transactions on Networking 11(5), 782–795 (2003)

10. Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear Network Coding. IEEE Transactions on
Information Theory 49(2), 371–381 (2003)

11. Sanders, P., Egner, S., Tolhuizen, L.: Polynomial Time Algorithms for Network
Information Flow. In: Proceedings of the 15th ACM Symposium on Parallel Algo-
rithms, San Diego, USA, June 2003, pp. 286–294 (2003)

A Proof of Theorem 3

The proof of Theorem 3 calls for the following technical lemma.

Lemma 3. Consider a delay-free acyclic network with corresponding matrix F
as in Section 2. Let I be the |E| × |E| identity matrix and define

Γ = (γi,j) = I + F .

Given a permutation p on {1, . . . , |E|} write

p(i)(λ) =

i times︷ ︸︸ ︷
p(p(· · · (λ) · · ·))

If for some λ ∈ {1, . . . , |E|} the following hold

(1) λ, p(λ), . . . , p(x)(λ) are pairwise different
(2) p(x+1)(λ) ∈ {λ, p(λ), . . . , p(x)(λ)}
(3) γλ,p(λ), γp(λ),p(p(λ)), . . . , γp(x)(λ),p(x+1)(λ) are all nonzero

then x = 0.

Proof. Let p be a permutation and let x and λ be numbers such that (1), (2)
and (3) hold. As p is a permutation then (1) and (2) implies that p(p(x)(λ)) = λ.
Aiming for a contradiction assume x > 0. As p(η) = η does not hold for any
η ∈ {λ, p(λ), . . . , p(x)(λ)},

γλ,p(λ), γp(λ),p(2)(λ), . . . , γp(x)(λ),p(x+1)(λ)

are all non-diagonal elements in I + F . By (3) we therefore have constructed a
cycle in a cycle-free graph and the assumption x > 0 cannot be true. ��

172 O. Geil, R. Matsumoto, and C. Thomsen

Proof (of Theorem 3). A monomial is in the support of the determinant of Mt

if and only if it is in the support of the determinant of

Nt =
(

I + F BT
t

A 0

)
= (ni,j) .

To ease the notation in the present proof we consider the latter matrix. Let p be
a permutation on {1, . . . , |E|+ h} such that

|E|+h∏
s=1

ns,p(s) �= 0 . (8)

Below we order the elements in {1, . . . , |E|+ h} in a particular way by indexing
them i1, . . . , i|E|+h according to the following set of procedures.

Let i1 = |E|+ 1 and define recursively

is = p(is−1)

until |E| < p(is) ≤ |E| + h. Note that this must eventually happen due to
Lemma 3. Let s1 be the (smallest) number such that |E| < p(is1) ≤ |E| + h
holds. This corresponds to saying that ni1,p(i1) is an entry in A, that ni2,p(i2),
. . . , nis1−1,p(is1−1) are entries in I + F , and that nis1 ,p(is1) is an entry in BT

t .
Observe, that p(ir) = ir cannot happen for 2 ≤ r ≤ s1 as already p(ir−1) = ir
holds. As nir ,p(ir) is non-zero by (8) we therefore must have

nir ,p(ir) = fir,p(ir) = fir ,ir+1

for 2 ≤ r < s1. Hence,

(ni1,p(i1), . . . , nis1 ,p(is1)) = (a1,i2 , fi2,i3 , . . . , fis1−1,is1
, bt,v1,is1

)

for some v1. Denote this sequence by P1. Clearly, P1 corresponds to the polyno-
mial K1 in the theorem.

We next apply the same procedure as above starting with is1+1 = |E| + 2
to get a sequence P2 of length s2. Then we do the same with is1+s2+1 = |E| +
3, . . . , is1+···sh−1+1 = |E| + h to get the sequences P3, . . . , Ph. For u = 2, . . . , h
we have

Pu =
(
nis1+···+su−1+1,p(is1+···+su−1+1), . . . , nis1+···+su ,p(is1+···+su)

)
=

(
au,is1+···+su−1+2 , fis1+···+su−1+2,is1+···+su−1+3 , . . . ,

fis1+···+su−1,is1+···+su
, bt,vu,is1+···+su

)
.

Clearly, Pu corresponds to Ku in the theorem. Note that the sequences P1, . . . , Ph

by the very definition of a permutation are edge disjoint in the sense that

On Field Size and Success Probability in Network Coding 173

(1) ni,j occurs at most once in P1, . . . , Ph,
(2) if nj,l1 , nj,l2 occur in P1, . . . , Ph then l1 = l2,
(3) if nj1,l, nj2,l occur in P1, . . . , Ph then j1 = j2.

Having indexed s1 + · · ·+ sh of the integers in {1, . . . , |E|+h} we consider what
is left, namely

Λ = {1, . . . , |E|+ h} \ {i1, . . . , is1+...+sh
} .

By construction we have i1 = |E|+ 1, . . . , is1+···+sh−1+1 = |E|+ h and therefore
Λ ⊆ {1, . . . , |E|}. Also by construction for every

δ ∈ {1, . . . , |E|} ∩ {i1, . . . , is1+···+sh
}

we have δ = p(ε) for some ε ∈ {i1, . . . , is1+···+sh
}. Therefore p(λ) ∈ Λ for all

λ ∈ Λ holds. In particular p(x)(λ) ∈ {1, . . . , |E|} for all x. From Lemma 3 we
conclude that p(λ) = λ for all λ ∈ Λ. ��

Montgomery Ladder for All Genus 2

Curves in Characteristic 2

Sylvain Duquesne

Université Montpellier II,
Laboratoires I3M, UMR CNRS 5149 and LIRMM, UMR CNRS 5506

Place Eugène Bataillon CC 051, 34005 Montpellier Cedex, France
duquesne@math.univ-montp2.fr

Abstract. Using the Kummer surface, we generalize Montgomery lad-
der for scalar multiplication to the Jacobian of genus 2 curves in char-
acteristic 2. Previously this method was known for elliptic curves and
for genus 2 curves in odd characteristic. We obtain an algorithm that
is competitive compared to usual methods of scalar multiplication and
that has additional properties such as resistance to simple side-channel
attacks. Moreover it provides a significant speed-up of scalar multipli-
cation in many cases. This new algorithm has very important applica-
tions in cryptography using hyperelliptic curves and more particularly for
people interested in cryptography on embedded systems (such as smart
cards).

Keywords: Hyperelliptic curves, Characteristic 2, Kummer surface,
Cryptography, Scalar multiplication.

1 Introduction

Elliptic curve cryptosystems were simultaneously introduced by Koblitz [17] and
Miller [26]. They are becoming more and more popular because the key length
can be chosen smaller than with RSA cryptosystems for the same level of security.
This small key size is especially attractive for small cryptographic devices like
smart cards. Hyperelliptic curves allow to generalize elliptic curves cryptosys-
tems on smaller base field where basic operations are cheaper. In all schemes, the
dominant operation is a scalar multiplication of some point on an elliptic curve
(or some element on the Jacobian of a hyperelliptic curve). Hence, the efficiency
of this scalar multiplication is central in elliptic and hyperelliptic curve cryp-
tography. In this paper we are dealing with scalar multiplication on Jacobian of
genus 2 curves defined over a field of characteristic 2.

For certain elliptic curves, Montgomery [27] developed a method, called Mont-
gomery ladder, allowing faster scalar multiplication than usual methods. His
method has the extra advantage that it is resistant to simple side-channel at-
tacks. This is very interesting for people who want to use elliptic curves on
embedded devices like smart cards. This method was generalized to any elliptic
curves in odd characteristic in [1], to elliptic curves in characteristic 2 [24] and

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 174–188, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 175

more recently to genus 2 curves in odd characteristic [6,12]. Finally, Gaudry
announced last year in [13] he was able to deal with certain genus 2 curves in
characteristic 2 and he is currently writing a paper with Lubicz [14].

The aim of this paper is the generalization to all genus 2 curves in characteris-
tic 2. In the following, K will denote a field of characteristic 2, M a multiplication
in K, S a squaring and Mc a multiplication by a constant depending only on the
curve. The cost of this operation is usually the same as the one of a multipli-
cation M but it can be neglected if the curve is well chosen. For cryptographic
applications, the base field we have in mind is IF2d where d is a prime number
(because of the Weil descent [11]). This paper is organized as follows: in Sections
2 and 3 we recall Montgomery ladder for elliptic curves and basic statements on
genus 2 curves. In Section 4 we introduce the Kummer surface in characteris-
tic 2 which allows to develop a Montgomery ladder. Formulas for addition and
doubling and comparisons with other formulas are given in Section 5.

2 Montgomery Ladder on Elliptic Curves in
Characteristic 2

Let E be an elliptic curve defined over K by the equation

y2 + xy = x3 + a2x
2 + a6,

with a6 �= 0. Every non-supersingular elliptic curve defined over K is isomorphic
to a curve given by such an equation. The problem we are interested in for
cryptographic purposes is the followingscalar multiplication, namely:

Given a point P ∈ E(K) and an integer n, compute nP as fast as possible.

Of course there are a lot of methods to do this (double and add, sliding window,
w-NAF, ...). To improve these algorithms, it is very convenient to use projective
coordinates in order to avoid expensive divisions in K. Hence, we use a triple
(X, Y, Z) in IP2(K) such that x = X/Z and y = Y/Z to represent the point
(x, y).

In [27], Montgomery proposed to avoid computation of the y-coordinate, so
that we can hope that basic operations (doubling and addition) are easier to
compute. Since, for any x-coordinate, there are two corresponding points on the
curve which are opposite, this restriction is equivalent to identifying a point on
the curve and its opposite. If we want to add two points ±P and ±Q, we cannot
decide if the result obtained is either ±(P + Q) as required or ±(P −Q). So the
group law is lost. Nevertheless, some operations remain possible like doubling.
Unfortunately, doubling is not sufficient for a complete scalar multiplication. In
fact additions are possible if the difference P −Q is known. Then, the principle
to compute nP is to use pairs of consecutive multiples of P . The algorithm for
scalar multiplication, usually called Montgomery ladder, is as follows:

176 S. Duquesne

Algorithm 1. Montgomery scalar multiplication algorithm on elliptic curves

Input : P ∈ E (K) and n = (n�−1 · · ·n0) an integer in binary representation.
Output : x and z-coordinate of nP .

1. Initialize Q = (Q1, Q2) = (P, 2P)
2. for i from �− 2 down to 1 do

if ni = 0 then Q = (2Q1, Q1 + Q2)
if ni = 1 then Q = (Q1 + Q2, 2Q2)

3. return Q1

At each step, Q = (kP, (k + 1)P) for some k and we compute either (2kP, (2k +
1)P) or ((2k + 1)P, (2k + 2)P), so we always have Q2 − Q1 = P and additions
can be performed.

Contrary to double and add or sliding window methods, both an addition and
a doubling are done for each bit of the exponent. It is the price to pay to avoid
the y-coordinate but the gain obtained thanks to this restriction is sufficient to
compensate for the larger number of operations.

In [24], Lopez and Dahab generalized Montgomery’s idea to binary curves
and gave formulas for addition (assuming the difference is known) and doubling
requiring respectively 4 multiplications and 1 squaring in K (4M and 1S) and 2
M and 3 S. Thus, the cost of Montgomery ladder is about 6|n|2 M and 4|n|2 S
where |n|2 denotes the number of bits of n. This makes Montgomery ladder one of
the best known algorithm for scalar multiplication algorithms in characteristic
2 [32]. Moreover, Montgomery ladder has the extra advantage to be resistant
against simple side-channel attacks.

These attacks use observations like timings [18], power consumption [19] or
electromagnetic radiation [30]. They are based on the fact that addition and
doubling are two different operations on elliptic curves. It is then easy to decide,
for each bit of the exponent, if the algorithm (double and add for example) is
performing either a doubling (if the bit is 0) or a doubling and an addition (if
the bit is 1). Hence, it is easy to recover the whole exponent (which is often the
secret key).

Of course, various countermeasures have been proposed to secure the elliptic
curve scalar multiplication against side-channel attacks [5]. For example, if we
want to protect a double and add algorithm, the basic way is to perform extra,
useless, additions when the bit of the exponent is 0. In this way, for each bit
of the exponent we perform both an addition and a doubling so bits of the

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 177

exponent are indistinguishable. This is of course time consuming and sensible to
fault attacks but there are more efficient countermeasures [22].

With Montgomery ladder, we always have to perform both an addition and
a doubling for each bit of the exponent, so this method is naturally resistant to
simple side-channel attacks. Therefore it is particularly interesting and attractive
for people interested in elliptic curve cryptosystems on embedded systems. That
is one of the reasons why we want to generalize this method to hyperelliptic
curves of genus 2.

Finally, for some cryptosystems (like Diffie-Hellman key exchange, authenti-
cation), the x-coordinate of nP is sufficient but others require the y-coordinate.
Formulas to recover it are given in [24,29]. However, it is also possible to use
variants of these protocols where the x-coordinate is sufficient. Of course these
remarks are also valid for hyperelliptic curves [31]. Thereafter we will not take
this into consideration.

In order to generalize this method to genus 2 curves, let us first recall some
essential background on these curves.

3 Background on Genus 2 Curves in Characteristic 2

Every genus 2 curve is hyperelliptic. So, in the following, we do not state that
the curves we are interested in are hyperelliptic.

Moreover, as usual in cryptography, we will concentrate on imaginary curves
defined over K which are given by equations of the form

C : y2 + h(x)y = f(x), (1)

where f and g are in K[x], deg(f) = 5, deg(h) ≤ 2 and there is no singular affine
points.

3.1 Arithmetic of Genus 2 Curves

Contrary to elliptic curves, the set of points on genus 2 curves does not form a
group. But the Jacobian of C, denoted J (C), is a group (in the case of elliptic
curves, this Jacobian is isomorphic to the curve itself). More details on the
definition of the Jacobian can be found in [25] or [5]. There are mainly two ways
to represent elements in the Jacobian:

- with a couple of points (P1 = (x1, y1) and P2 = (x2, y2)) on the curve such
that the unoredered pair (P1, P2) is fixed under the Frobenius action (this
is a consequence of the Riemann-Roch theorem),

- with 2 polynomials u and v in K[x] where u is monic, deg(v) <deg(u) ≤ 2
and u|(v2 + hv + f) (Mumford representation [28]).

The correspondence between these representations is that u(x) = (x+x1)(x+
x2) and v(xi) = yi with appropriate multiplicities. In [3], Cantor described
the group law on Jacobians with Mumford representation (in characteristic 0).

178 S. Duquesne

Several researchers such as Koblitz [15], or more recently Lange [21] made explicit
the steps of Cantor’s Algorithm and listed the operations one really needs to
perform. They obtained explicit formulas for the group law on the Jacobian
which are an analog of the different choices of coordinates for elliptic curves. In
this this paper, our purpose is to give an analog of Montgomery ladder. Let us
first recall that the equation defining the curve can be simplified.

3.2 Classification of Genus 2 Hyperelliptic Curves over IF2d

As explained in the previous section, we are interested in curves defined over
IF2d by an equation of the form

y2 + (h2x
2 + h1x + h0)y = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0. (2)

In fact, genus 2 curves can be divided into three types depending on the leading
coefficient of h. Following the notations of [4], we have:

– type I: h2 �= 0.
– type II: h2 = 0, h1 �= 0.
– type III: h2 = h1 = 0, h0 �= 0.

Moreover, Choie and Yun prove in [4] that type I has asymptotically between 2q3

and 4q3 isomorphism classes (q = 2d), type II about 2q2 and type III between 2q
and 32q. However, Galbraith proved in [10] that type III curves are supersingular
(hence cryptographically weaker), so only curves of types I and II are interesting
for cryptosystems if pairings are not used.

In [2], equations for type I and type II are given in a minimal form, in the
sense that if the coefficients range through the base field, the expected number of
curves is obtained (say 4q3 for type I and 2q2 for type II). We recall these minimal
forms with slight modifications (we perform a very easy change of variable to
assume that f1 = 0 instead of f2 = 0 and we exploit that d is odd). In the
following, ε is an element of IF2.

Theorem 1. A hyperelliptic curve of type I defined over IF2d with d odd can be
rationally transformed into one of the following equations:

type Ia : y2 + (x2 + h1x + h2
1)y = x5 + εx4 + f2x

2 + f0,

type Ib : y2 + (x2 + h1x)y = x5 + εx4 + f2x
2 + f0.

A hyperelliptic curve of type II defined over IF2d with d odd can be rationally
transformed into the following equation :

y2 + xy = x5 + f3x
3 + εx2 + f0.

Remark 1. It is shown in [2] that we can easily find curves of each type suitable
for cryptography. Moreover, it will be interesting in the following to choose
h1 = 1 for curves of type I. Even with this restriction, there remain sufficiently
many isomorphism classes for curves of type I (4q2) and, again, there is no
obstruction to find such curves suitable for cryptography.

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 179

4 The Kummer Surface in Characteristic 2

With elliptic curves, the main idea of Montgomery method was to avoid the
computation of the y-coordinate. It has already been explained in [6] (in odd
characteristic) that a good way to generalize this idea is to use the Kummer sur-
face explicitely described in odd characteristic in [9]. This object is the quotient
of the Jacobian by the hyperelliptic involution. In other words, we identify an
element of the Jacobian and its opposite. The Kummer surface in characteristic
�= 2 was known for a long time and we generalized it to fields of characteristic
2 in [7]. It is a quartic surface in IP3. We give here the definition of the Kum-
mer surface and its properties. Proofs and more details can be found in [7]. The
Kummer surface is the image of the map

κ : J (K) −→ IP3(K)
{(x1, y1), (x2, y2)} �−→ [k1, k2, k3, k4]

with k1 = 1, k2 = x1 + x2, k3 = x1x2 and

k4 =
(x1 + x2)

(
x2

1x
2
2 + f3x1x2 + f1

)
+ h(x2)y1 + h(x1)y2

(x1 + x2)2

Let us note that the image of the point at infinity is [0, 0, 0, 1]. More precisely,
the Kummer surface is the projective locus given by an equation K of degree four
in the first three variables and of degree two in the last one. The exact equation
can be found in [7]. In passing from the Jacobian to the Kummer surface, we
lost the group structure but traces of it remain. For example, it is possible to
double on the Kummer surface. Nevertheless, for general divisors A and B, we
cannot determine values of ki(A + B) from values of ki(A) and ki(B) since the
latter does not distinguish between ±A and ±B, and so not between ±(A+ B)
and ±(A − B) (as was already the case with elliptic curves). However values of
ki(A+B)kj(A−B) + εijki(A−B)kj(A+ B) are well determined. We have [7].

Theorem 2. Let A, B in J (K) and κ(A), κ(B) their image in the Kummer
surface. Then, for i, j ∈ {1, . . . , 4}, there are explicit polynomials ϕij biquadratic
in ki(A), ki(B) such that projectively

ki(A+ B)kj(A− B) + εijki(A− B)kj(A+ B) = ϕij(A,B) (3)

where εij = 1 if i �= j and 0 if i = j.

These traces of the group law allow to give an analog for genus 2 curves of
Montgomery ladder. Let D be an element of the Jacobian. Our purpose is the
computation of nD for some integer n. As it is not possible to add two divi-
sors except if their difference is known (in which case we will abusively denote
by + this “differential addition” on the Kummer surface), the principle is (as
for elliptic curves) to use pairs of consecutive multiples of D, so that the differ-
ence between the two components of the pair is always known and equal to D (in

180 S. Duquesne

fact, it is sufficient to know κ(D), the difference in the Kummer surface). The
algorithm for scalar multiplication is as follows:

Algorithm 2. Montgomery scalar multiplication algorithm for genus 2 curves

Input : D ∈ J (K) and n = (n�−1 · · ·n0) an integer in binary representation.
Output : κ(nD), the image in the Kummer surface of nD.

1. Initialize (A,B) = (κ(D), κ(2D))
2. for i from �− 2 down to 1 do

if ni = 0 then (A,B) = (2A,A+ B)
if ni = 1 then (A,B) = (A+ B, 2B)

3. return A
Let us now explain more precisely how the addition and the doubling can be

derived from the biquadratic forms and give explicit formulas.

5 Formulas for Addition and Doubling

Assuming the knowledge of (ki(A− B))i=1..4, it can be easily seen that the bi-
quadratic forms allow to compute (ki(A+ B))i=1..4. We can also compute ki(2A)
by putting A = B.

Proposition 1. Let K be a field of characteristic 2 and let C be a curve of genus
2 defined over K by an equation of the form (2). Let A,B ∈ J (C) and κ(A) =
[k1(A), k2(A), k3(A), k4(A)], κ(B) = [k1(B), k2(B), k3(B), k4(B)] their images in
the Kummer surface. Assume that the difference A−B is known and that k1(A−
B) = 1 (remember we are in IP3(K)). Then we obtain the Kummer coordinates
for A+ B by the following formulas :

k1(A+ B) = ϕ11(A,B)
k2(A+ B) = ϕ12(A,B) + k1(A+ B)×k2(A− B)
k3(A+ B) = ϕ13(A,B) + k1(A+ B)×k3(A− B)
k4(A+ B) = ϕ14(A,B) + k1(A+ B)×k4(A− B).

The formulas for 2A are

k1(2A) = ϕ14(A,A)
k2(2A) = ϕ24(A,A)
k3(2A) = ϕ34(A,A)
k4(2A) = ϕ44(A,A).

The expressions of the ϕij are given in [7] and are available on the web page of
the author [8]. However, they require a large number of operations for a curve
given by the general equation (2). The main difficulty is to find expressions which
require the least possible number of multiplications in K. In order to provide

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 181

formulas as efficient as possible, we distinguish the types of curve. In each case,
we give more precise expressions of the ϕij we are interested in. For clarity we
denote κ(A) = (k1, k2, k3, k4) and κ(B) = (l1, l2, l3, l4). We also use the sign
× to denote multiplications that must be done and nothing for multiplications
already done before in the formulas. We also choose to provide compact formulas
but step-by-step (verified) formulas are given on the web page of the author [8].

5.1 Formulas for Curves of Type Ia

Remember that any curve of type Ia can be defined by an equation of the form

y2 + (x2 + h1x + h2
1)y = x5 + εx4 + f2x

2 + f0.

Addition and doubling can be computed using the following formulas for ϕij (be
carefull that these formulas must be combined with proposition 1 to give the
complete differential addition):

ϕ11(A,B) = (k1×l4 + k2×l3 + k4×l1 + k3×l2)2

ϕ12(A,B) =
(
k1l4 + k4l1 + h1×k1×l3 + h1×k3×l1 + h2

1×k1×l2 + h2
1×k2×l1

)
×(

k2l3 + k3l2 + h1k1l3 + h1k3l1 + h2
1k1k2 + h2

1k2l1
)

ϕ13(A,B) = h2
1×(k4l1 + k1l4)×(h1k1×h1l1 + k2×l2) + (h1k3l1 + k4l1)×(k3×l3 +

h1×(h1k3l1+k2l3+h2
1k1l2))+(h1k1l3+k1l4)×(k3l3+h1×(h1k1l3+

k3l2 + h2
1k2l1)) + (h2

1k2l1 + h2
1k1l2)×α

ϕ14(A,B) = (α + h1×k1l4)2 + k3l2×(h2
1×(k4l1 + h2

1k2l1 + h2
1k1l2 + k2l3) + β) +

(k4l1 + k1l4 + k2l3)×(h2
1×(k1l4 + h2

1k2l1 + h2
1k1l2) + β)

with α = h1×(k2l3 + k3l2 + h1k1l3 + h1k3l1) + k3l3 + h2
1×k2l2

β = h1×(k3l3 + h2
1k2l2)

ϕ14(A,A) = α + β2

ϕ24(A,A) = h1×((h2
1×k2

1 +k2
2)×(d1×k2

1 +h2
1×d2×k2

1 +k2
4)+(d2k

2
1 +h2

1×k2
2)×β +

ϕ14(A,A))
ϕ34(A,A) = β×(k2

4 + h2
1d2k

2
1) + h2

1×(d1k
2
1×(h2

1k
2
1 + 1

h2
1
×k2

3) + α)

ϕ44(A,A) = h1×(h2
1k

2
2×(d1k

2
1 + h2

1d2k
2
1 + c2×k2

2) + k2
3×(k2

4 + d1k
2
1 + c3×k2

3)) +
(c1×k2

1 + k2
4)2

with α = h2
1×(k2

1×k2
4 + k2

2×k2
3)

β = k2
3 + h2

1k
2
2

and the precomputed constants

d1=f0+εh4
1, d2=f2+εh2

1+h3
1, c1=

√
d2
1+h2

1(f0+h2
1f2)d2, c2=

d1+h2
1d2+h5

1
h1

and c3=
d2
h1

Assuming these constants (only depending on the curve) and the inverse of
h2

1 are precomputed, an addition requires 21M, 13Mc and 2S whereas a doubling
requires 9M, 12Mc and 6S. This is, of course, not satisfying but this is the worst
case. Moreover, we observe that there are many multiplications by h1 so it is
interesting to choose a curve with h1 = 1. In this case an addition can be done
in 21M and 2S and a doubling in 9M, 5Mc and 6S which is much better.

182 S. Duquesne

5.2 Formulas for Curves of Type Ib

Remember that any curve of type Ib can be defined by an equation of the form

y2 + (x2 + h1x)y = x5 + εx4 + f2x
2 + f0.

Addition and doubling can be computed using the following formulas for ϕij (be
carefull that these formulas must be combined with proposition 1 to give the
complete differential addition):

ϕ11(A,B) = (k1×l4 + k2×l3 + k4×l1 + k3×l2)2

ϕ12(A,B) = (k1l4+k4l1+h1×k1×l3+h1×k3×l1)× (k2l3 + k3l2 + h1k1l3 + h1k3l1)
ϕ13(A,B) = (k4l1 + h1k3l1)×α + (k1l4 + h1k1l3)×β

ϕ14(A,B) = α×β

with α = h1×(k1l4 + k2l3) + k3×l3

β = h1×(k4l1 + k3l2) + k3l3

ϕ14(A,A) = h2
1×

((
k2
1 + k2

2

)
×
(
k2
3 + k2

4

)
+ k2

1×k2
3 + k2

2×k2
4

)
+ k4

3

ϕ24(A,A) = α×k2
1 + h1×

(
k2
2k

2
4 + k4

3 + d1×k2
1k

2
3

)
ϕ34(A,A) = h1×αk2

1 + h2
1×k4

3 + k2
3×k2

4 ,

ϕ44(A,A) = h1×
(
h1αk2

1 + k2
3k

2
4

)
+

(
k2
4 + c1×k2

1 + c2×k2
2

)2
+ c3×k4

3

with α = f0h1×
(

h2
1×k2

1 + k2
2 +

1
h2

1

×k2
3

)
with the precomputed constants

d1 = f2 + εh2
1 + h3

1 +
f0

h2
1

, c1 =
√

f0h2
1d1, c2 =

√
f0h2

1 and c3 = f2 + εh2
1

Assuming these constants and 1
h2
1

are precomputed, an addition requires 14M,
4Mc and 1S whereas a doubling requires 5M, 12Mc and 6S. This is more satisfying
than type Ia. We again observe that there are many multiplications by h1. So, if
h1 = 1 an addition can be done in only 14M and 1S and a doubling in 5M, 5Mc

and 6S. This becomes interesting and competitive with other methods. Indeed,
the best known method for classical scalar multiplication algorithms requires
35M and 6S for doubling (33M and 6S if h1 = 1) whereas our method requires
35M and 7S (24M and 7S if h1 = 1) for both a doubling and an addition, so it
is inevitably better. In fact, we can do even better with curves of type II.

5.3 Formulas for Curves of Type II

Remember that any curve of type II can be defined by an equation of the form

y2 + xy = x5 + f3x
3 + εx2 + f0.

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 183

Addition and doubling can be computed using the following formulas for ϕij (be
carefull that these formulas must be combined with proposition 1 to give the
complete differential addition):

ϕ11(A,B) = (α + β)2

ϕ12(A,B) = (k1×l3 + k3×l1)
2

ϕ13(A,B) = k3l1×α + k1l3×β

ϕ14(A,B) = α×β

with α = k1×l4 + k2×l3

β = k4×l1 + k3×l2

ϕ14(A,A) = k2
1×k2

4 + k2
2×k2

3

ϕ24(A,A) = k2
1×k2

3

ϕ34(A,A) =
(
k2
3 +

√
f0×k2

1

)2

ϕ44(A,A) =
(
f3×

(
k2
3 +

√
f0k

2
1

)
+

√
f0×k2

2 + k2
4

)2

These formulas are very simple and easy to evaluate. There is no doubt that they
provide very fast arithmetic on genus 2 curves in characteristic 2. Indeed, assum-
ing
√

f0 is precomputed, an addition requires 12M and 2 S whereas a doubling
requires 3M, 3Mc and 6 S. This means that a complete scalar multiplication
using Montgomery ladder requires only 18M (and even 15 if f0 and f3 are well
chosen) and 8 S for each bit of the exponent whereas 20M and 8S are required for
the doubling alone in ”recent” projective coordinates ([20]). It is more delicate
to compare this method with elliptic curve without a fully optimized implemen-
tation. However, our method seems to be competitive with Montgomery ladder
on elliptic curves (18 multiplications in IF2d against 6 in IF22d). Let us now give
more detailed comparisons.

5.4 Comparison with Usual Algorithms for Scalar Multiplication

To date, the best algorithms for scalar multiplication on genus 2 curves in charac-
teristic 2 are obtained by using mixed projective coordinates or variants [21,20].
In this case, Lange needs around 40 multiplications or squaring both for a mixed
addition and for a doubling. However, we can use efficient algorithms (like the
sliding window method) whereas, in Montgomery ladder, we must perform both
an addition and a doubling for each bit of the exponent. Before comparing effi-
ciencies more precisely, let us put advantages of Montgomery ladder forward.

– As was the case for elliptic curves, Montgomery ladder is naturally resis-
tant to simple side-channel attacks, contrary to other algorithms for scalar
multiplications. For this reason it is of great interest to people who need to
implement hyperelliptic curves protocols on smart cards or other systems
which are sensitive to side-channel attacks.

184 S. Duquesne

– This algorithm is very easy to implement, there are no precomputations
(as in the sliding window method) and an element on the Kummer surface
requires only 4 base field elements whereas weighted projective coordinates
require 6 or 8 of them so it is also interesting in terms of memory usage.
This is an advantage for constrained environments.

In order to compare efficiency of our method with usual methods, we give in table
1, for each type of curve, complexities for our algorithm and for a sliding window
method with window size 4 using the best system of coordinates. In practice,
sizes 3 or 4 are used but, for objectivity, we choose to make our comparisons
with a lower bound for complexities. The system of coordinates used is the so
called ”recent coordinate” for type II curves [20] and ”new coordinate” for type
I curves (except type Ia with h1 �= 1 where projective coordinates are more
appropriate) [21]. There are no distinction between types Ia and Ib in [21],
so complexities given here come from [5] and our own counting based on [21]
and [2]. These complexities are given for one bit of the exponent (on average
for the sliding window method but we do not count the precomputations so
the complexities given for sliding window method are underestimated). In order
to obtain comparisons as objective as possible, we also give an equivalent in
number of multiplication assuming that performing a square in IF2d is either as
expensive as 0.3 multiplications (which is usually the case in polynomial basis) or
free (which is the case in normal basis). Finally we give the gain obtained using
our method. Note that it is possible to obtain better results if the coefficients of
the curve are well chosen (so that multiplication by constants Mc are not taken
into account).

Our new method is not interesting in term of efficiency for type Ia curves with
h1 �= 1. In fact we obtain in this case a similar result as in odd characteristic [6]:

Table 1. Comparison between sliding window method and Montgomery ladder

Type of the curve Ia Ia (h1 = 1) Ib Ib (h1 = 1) II

Lange’s formulas
Double 38M+7S 33M+6S 37M+6S 33M+6S 20M+8S

Addition 38M+4S 35M+5S 37M+4S 35M+4S 42M+7S

Sliding window 45.6M+7.8S 40M+7S 44.4M+6.8S 40M+6.8S 28.4M+9.4S
with S=0.3M 48M 42.1M 46.5M 42M 31.2M

with S=0 45.6M 40M 44.4M 40M 28.4M

Kummer surface
Double 21M+6S 13M+6S 17M+6S 10M+6S 6M+6S

Addition 34M+2S 21M+2S 18M+S 14M+S 12M+2S

Montgomery ladder 55M+8S 34M+8S 35M+7S 24M+7S 18M+8S
with S=0.3M 57.4M 36.4M 37.1M 26.1M 20.4M

with S=0 55M 34M 35M 24M 18M

gain with S=0.3M -19.5% 13.5% 20% 38% 35%
gain with S=0 -20.5% 15% 21% 40% 37%

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 185

Montgomery ladder is less efficient than usual scalar multiplication algorithm
but is still interesting because of the reasons shown at the beginning of this
section (mainly simple side-channel attack resistance). Our method becomes
very interesting in term of efficiency for curves of type Ib and II since gain
between 20 and 40 percent are obtained. Let us note that for these types of
curves, Montgomery ladder cannot be slower that any other scalar multiplication
algorithm (with the systems of coordinates known to date of course) since for
each bit of the exponent it requires less operations than a doubling alone.

Finally, it is also relevant to compare our algorithm with usual ones in affine
coordinate (since inversion are not so expensive in even characteristic) and more
precisely with side-channel atomicity developed in [22] (since it also provides
simple side-channel resistance). Assuming that the cost of an inversion is 10
multiplications, the algorithm in [22] requires 33M and 5S for both a doubling
and an addition whatever the type of the curve. This means that the global cost
is around 40 mulitplications for each bit of the exponent which is better than
our algorithm only for curves of type Ia with random h1. In the best case (type
II), we win a factor 2 compared to Lange-Mishra alorithm.

5.5 Comparison with Elliptic Curves

The main interest of hyperelliptic cryptosystems is that, for the same level of
security, the base field is chosen twice as small as the one used for elliptic cryp-
tosystems. Thus base field operations are cheaper in hyperelliptic cryptosystems.
More precisely, for cryptographic applications, the base field arithmetic uses ei-
ther the school-book or the Karatsuba algorithm so the cost of a base field
multiplication in elliptic cryptosystems is at least three times the cost in hy-
perelliptic cryptosystems. We assume in the following that this minimal ratio
holds. However, it is quite delicate to do an objective comparison since this ratio
is dependent on the device used (architecture, multiprecision algorithms, size of
fields,...). For instance, in constraint environments, doubling the size of the base
field can be very expensive and we can take more advantage of our new method
in such a case.

It is delicate to decide which is the best known method to perform the scalar
multiplication for elliptic curves in characteristic 2 since it also depends on the
device (cost of the inversion, use of precomputations, constraints) [32]. For ob-
vious reasons, the more appropriate is to compare our method with the Mont-
gomery ladder for elliptic curves even if it is not the best one (but not so far).
This algorithm requires 6 M and 4 S which is equivalent, under our optimistic
assumptions, to 18 M and 12 S in IF2d . We can see that this complexity is approx-
imately the same than the one obtained for type II curves (18 M and and 8 S).
This leads to a 5 percent gain if S=0.3M. It would be of course more appropriate
to perform a real life comparison as the one presented by Bernstein at ECC 2006
in odd characteristic following the work of Gaudry [12]. At present, our team is
achieving a library in order to be able to perform this type of comparisons [16]
but it is a long term work.

186 S. Duquesne

5.6 Comparison with Gaudry-Lubicz Formulas

Recently, in [13], Gaudry announced he was able to generalize his previous work
([12]) to characteristic 2 and he is currently writing a paper with Lubicz on
the subject [14]. Their approach is different and uses theta functions to obtain
formulas for doubling and differential addition requiring only 4M, 3Mc and 5S
for the doubling and 11M and 4S for the differential addition. However these
formulas can only be used for curves of type Ib with h1 = 1. In this case,
Gaudry and Lubicz then obtain a Montgomery ladder complexity which is 20 to
25 % faster than ours (depending on the cost of squarings in IF2d) and which
is equivalent to our type II complexity. Unfortunately, their method cannot be
used for the other cases. Note again that both Gaudry-Lubicz formulas and our
formulas can be improved by a good choice of constants.

6 Conclusion and Prospects

Thanks to the Kummer surface, we generalized the Montgomery ladder to genus
2 curves in characteristic 2. Contrary to odd characteristic, the formulas obtained
are competitive for all genus 2 curves (which is important if the curve is chosen
by somebody else). This is not so surprising since this was already the case for
elliptic curves. All these formulas are available on [8] in magma format. For genus
2 curves of type Ia with h1 �= 1, our method is less efficient than usual scalar
multiplication algorithms on genus 2 curves but has the advantage to be resistant
to simple side-channel attacks. This was already the case in odd characteristic so
this kind of result was expected. It is more surprising that Montgomery ladder
for genus 2 curves provides gains of efficiency between 13 and 40 percent for
curves of type Ia (with h1 = 1), Ib and II compared to best algorithms known
to date (which are not protected against side-channel attack). On the contrary,
our method is less efficient than Gaudry-Lubicz one for curves of type Ib with
h1 = 1. We also show that, under some reasonable assumptions, Montgomery
ladder for type II curves is competitive with elliptic curves.

Finally we provide an algorithm for scalar multiplication which is not only
resistant to side-channel attack but is also very efficient. This proves, if needed,
that hyperelliptic curve cryptosystems are a good alternative to elliptic ones.

References

1. Brier, E., Joye, M.: Weierstrass Elliptic Curves and Side-Channel Attacks. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274. Springer, Heidelberg
(2002)

2. Byramjee, B., Duquesne, S.: Classification of genus 2 curves over IF2n and opti-
mization of their arithmetic. Cryptology ePrint Archive 107 (2004)

3. Cantor, D.G.: Computing on the Jacobian of a hyperelliptic curve. Math. Comp. 48,
95–101 (1987)

4. Choie, Y., Yun, D.: Isomorphism classes of hyperelliptic curves of genus 2 over IFq.
In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 190–202.
Springer, Heidelberg (2002)

Montgomery Ladder for All Genus 2 Curves in Characteristic 2 187

5. Cohen, H., Frey, G.: Handbook of elliptic and hyperelliptic curve cryptography,
Discrete Math. Appl. Chapman & Hall/CRC, Boca Raton (2006)

6. Duquesne, S.: Montgomery scalar multiplication for genus 2 curves. In: Buell, D.A.
(ed.) ANTS 2004. LNCS, vol. 3076, pp. 153–168. Springer, Heidelberg (2004)

7. Duquesne, S.: Traces of the group law on the Kummer surface of a curve of genus
2 in characteristic 2, preprint, available at [8]

8. Duquesne, S.: Formulas for traces of the group law on the Kummer surface of a
curve of genus 2 in characteristic 2,
http://www.math.univ-montp2.fr/∼duquesne/articles/kummer2

9. Flynn, E.V.: The group law on the Jacobian of a curve of genus 2. J. reine angew.
Math. 439, 45–69 (1993)

10. Galbraith, S.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASI-
ACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)

11. Gaudry, P., Hess, F., Smart, N.: Constructive and destructive facets of Weil descent
on elliptic curves. J. Cryptology 15(1), 19–46 (2002)

12. Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. Journal of Mathe-
matical Cryptology 1, 243–265 (2007)

13. Gaudry, P.: Variants of the Montgomery form based on Theta functions, Toronto
(November 2006)

14. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces. Cryp-
tology ePrint Archive 133 (2008)

15. Harley, R.: Fast arithmetic on genus 2 curves (2000),
http://cristal.inria.fr/∼harley/hyper

16. Imbert, L., Peirera, A., Tisserand, A.: A Library for Prototyping the Computer
Arithmetic Level in Elliptic Curve Cryptography. In: Proc. SPIE, vol. 6697, 66970N
(2007)

17. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)
18. Kocher, P.C.: Timing attacks on implementations of DH, RSA, DSS and other sys-

tems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

20. Lange, T.: Arithmetic on binary genus 2 curves suitable for small devices. In:
Proceedings ECRYPT Workshop on RFID and Lightweight Crypto., Graz, Austria,
July 14-15 (2005)

21. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra
Engrg. Comm. Comput. 15(5), 295–328 (2005)

22. Lange, T., Mishra, P.K.: SCA resistant parallel explicit formula for addition and
doubling of divisors in the Jacobian of hyperelliptic curves of genus 2. In: Maitra, S.,
Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797,
pp. 403–416. Springer, Heidelberg (2005)

23. Lopez, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999)

24. Lopez, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

25. Menezes, A., Wu, Y.H., Zuccherato, R.: An elementary introduction to hyperelliptic
curves. In: Koblitz, N. (ed.) Algebraic aspects of cryptography. Algorithms and
Computation in Mathematics, vol. 3, pp. 155–178 (1998)

188 S. Duquesne

26. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

27. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48, 164–243 (1987)

28. Mumford, D.: Tata lectures on Theta II. Birkhäuser, Basel (1984)
29. Okeya, O., Sakurai, K.: Efficient Elliptic Curve Cryptosystems from a Scalar Mul-

tiplication Algorithm with Recovery of the y-Coordinate on a Montgomery-Form
Elliptic Curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 126–141. Springer, Heidelberg (2001)

30. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Countermeasures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

31. Smart, N., Siksek, S.: A fast Diffe-Hellman protocol in genus 2. Journal of Cryp-
tology 12, 67–73 (1999)

32. Stam, M.: On Montgomery-Like Representations for Elliptic Curves over GF(2k).
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 240–253. Springer, Hei-
delberg (2002)

On Cryptographically Significant Mappings over

GF(2n)

Enes Pasalic

IMFM Ljubljana & University of Primorska, Koper
Slovenia

enespasalic@yahoo.se

Abstract. In this paper we investigate the algebraic properties of im-
portant cryptographic primitives called substitution boxes (S-boxes). An
S-box is a mapping that takes n binary inputs whose image is a binary
m-tuple; therefore it is represented as F : GF(2)n → GF(2)m. One of the
most important cryptographic applications is the case n = m, thus the
S-box may be viewed as a function over GF(2n). We show that certain
classes of functions over GF(2n) do not possess a cryptographic property
known as APN (Almost Perfect Nonlinear) permutations. On the other
hand, when n is odd, an infinite class of APN permutations may be de-
rived in a recursive manner, that is starting with a specific APN permu-
tation on GF(2k), k odd, APN permutations are derived over GF(2k+2i)
for any i ≥ 1. Some theoretical results related to permutation polynomi-
als and algebraic properties of the functions in the ring GF(q)[x, y] are
also presented. For sparse polynomials over the field GF(2n), an efficient
algorithm for finding low degree I/O equations is proposed.

1 Introduction

Differential cryptanalysis introduced in [2], together with linear cryptanalysis
[21] are considered as the most efficient cryptanalyst tools for block ciphers.
Commonly, the security of modern block ciphers substantially relies on the cryp-
tographic properties of its substitution boxes (S-boxes), which are in most of the
cases the only source of nonlinearity. These S-boxes are most often constructed
by means of certain well-known power mappings that have relatively good cryp-
tographic properties such as high nonlinearity, high algebraic degree and good
differential characteristics.

However, almost all families of so-called APN (Almost Perfect Nonlinear)
functions have been derived from power polynomials, that is F (x) = xd over the
field GF(2n) for a suitably chosen d. Following the lines of algebraic attacks, a
thorough examination of the known APN power polynomials has been discussed
in [8]. It was shown that all classes of known APN power functions are suscep-
tible to a degree decrease by applying some simple transformation techniques.
More precisely, the authors consider power polynomials of the form y = xd for
those d which ensure that xd is APN. Then one applies certain operations such
as composition, powering or multiplication to this function in order to obtain

J. von zur Gathen, J.L. Imaña, and Ç.K. Koç (Eds.): WAIFI 2008, LNCS 5130, pp. 189–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

190 E. Pasalic

independent multivariate quadratic equations over GF(2) in x, y. Applying such
transformations to the known APN power polynomials it was proved that all
classes admit certain number of independent quadratic equations over GF(2)
ranging from n (for Niho’s and Dobbertin’s exponent) to 9n for Welch expo-
nent. An exact evaluation on the number of linearly independent bi-affine and
quadratic equations (based mainly on the computer simulations for relatively
small input size) for the main classes of APN power monomials is given in [10].

Nevertheless, provided with such a number of linearly independent quadratic
equations that relate the input to the output of an S-box we still do not have
efficient tools for attacking block ciphers based on such S-boxes. For instance
the Advanced Encryption Standard (AES) can be represented as a system of
quadratic equations over GF(2) [11] or alternatively as an extremely sparse sys-
tem of quadratic equations over GF(28) [22], though there is no technique for
solving such a system efficiently. Though solving a random system of quadratic
equations (also known as MQ problem 1) is known to be an NP-hard problem
[17], in recent few years a lot of effort has been put to devise efficient algorithms
for solving systems of quadratic equations which possess a certain structure
[9,16,24]. The structure exploited in these algorithms is commonly the sparse-
ness of the system.

To satisfy the diverse cryptographic criteria, a cryptographically strong S-box
can be taken from the class of APN permutations. In addition it should have good
algebraic properties, so that low degree I/O (input/output) relations do not exist.
Unfortunately, when n is even, it has been a long-term open problem to prove
the nonexistence of APN permutations over GF(2n). We show that certain APN
functions, derived from power monomials, cannot be permutations; implying the
exclusion of this class of function as a possible candidate in construction of APN
permutations.

Ensuring that there do not exist quadratic equations which relate the input
and output of a given S-box, the complete cipher might be more resistant to
algebraic attacks as the number of monomials in resulting nonquadratic equa-
tions is much higher making the complexity of these attacks computationally
more demanding. Hence the main question that we try to answer is how do we
choose permutation polynomials over finite fields that are not susceptible either
to linear or differential cryptanalysis and at the same time have a relatively
large algebraic degree which cannot be significantly decreased. In this direction
we demonstrate the possibility of constructing APN permutations recursively.
Though we cannot provide a rigorous mathematical treatment of the particu-
lar recursive class, these functions are very interesting objects for cryptographic
applications.

In the last part of this manuscript we propose an efficient algorithm for finding
low degree input/output (I/O) relations for sparse polynomials over finite fields.
A similar approach has been taken in [8] where several techniques were developed

1 Not all instances of MQ problem are considered hard. That is, solving a set of of m
quadratic equations in n variables for a degenerate case m � n or n � m turns out
not to be hard.

On Cryptographically Significant Mappings over GF(2n) 191

for deriving quadratic I/O relations from certain classes of power monomials. Our
algorithm takes as input arbitrary sparse polynomial over F2n and outputs low
degree I/O equations in case of their existence.

The rest of the paper is organized as follows. Section 2 introduces basic def-
initions and concepts. The nonexistence of certain classes of permutations and
the implication of this result to the APN conjecture is treated in Section 3. In
this section a recursive construction of APN permutations with good algebraic
properties is also discussed. In Section 4 an efficient algorithm for finding low
degree I/O relations is given. Section 5 concludes the paper.

2 Preliminaries

In the sequel F2n will denote the Galois field of 2n elements. The polynomial
degree, denoted by degp, associated to P (x) =

∑
i aix

i is defined as the largest i
for which ai is nonzero. Any mapping F : F2n → F2n can be viewed as a mapping
F ′ : Fn

2 → Fn
2 by fixing the isomorphism between the vector space Fn

2 and the
field F2n . If we represent the function F as a function on the vector space Fn

2 ,
then we may consider this function as being a collection of n Boolean functions
f1, . . . , fn, that is, F ′ = (f1, . . . , fn). Here, the Boolean functions fi : Fn

2 → F2.
Then the algebraic degree of F ′ is defined to be,

Definition 1. The algebraic degree of F ′ is defined as,

deg(F ′) = min
τ∈F

n
2
∗ deg(

n∑
j=1

τjfj(x)), (1)

where deg(f) denotes the usual algebraic degree of a Boolean function f , that is,
the highest length of the terms that appear in the algebraic normal form of f .

The algebraic degree may also be deduced from the polynomial representation.
That is, for a function F : F2n → F2n represented as F (x) =

∑2n−1
i=0 aix

i, the
algebraic degree is given by

deg(F) = max
i
{wt(i); ai �= 0}, (2)

where wt(i) denotes the Hamming weight (number of ones) in a binary repre-
sentation of integer i. Also for a function F (x, y) : F2n × F2n → F2n , where
F (x, y) =

∑2n−1
i,j=0 ai,jx

iyj, the algebraic degree is defined as,

deg(F) = max
i,j
{wt(i) + wt(j); ai,j �= 0}, (3)

The differential properties of F : F2n → F2n are visualized through so-called
differential table that for each a ∈ F∗

2n , b ∈ F2n consists of the number of solutions
to the following equation,

F (x + a) + F (x) = b a ∈ F∗
2n , b ∈ F2n . (4)

192 E. Pasalic

Then, a function F is called almost perfect nonlinear (APN) if each equation (4)
has at most two solutions in F2n and such a function has a highest resistance
to differential cryptanalysis. The differential properties of F are then comprised
through the differential table,

{δF (a, b)} = {|{x ∈ F2n : F (x + a) + F (x) = b}|; a ∈ F∗
2n , b ∈ F2n}.

The nonlinearity of F : F2n → F2n and hereby the resistance to linear crypt-
analysis of Matsui [21] is measured through extended Walsh transform defined
as,

WF (λ, γ) =
∑

x∈F2n

(−1)Tr(γF (x)+λx), λ ∈ F2n , γ ∈ F∗
2n , (5)

where ′Tr′ denotes the trace mapping, i.e. Tr(x) = x + x21
+ · · ·+ x2n−1

. Then,
defining the linearity as

L(F) = max{|WF (λ, γ)| : λ ∈ F2n , γ ∈ F∗
2n},

the goal is to find mappings with minimum possible value for L(F). Those F ,
that achieve the minimum possible value for L(F) are called AB (almost bent) or
maximally nonlinear, and these functions have the maximum resistance against
linear cryptanalysis. For odd n = 2m+1 this value is known to be 2m+1 [7]. For
even n it is still open problem to determine the minimum for L(F). The best
known value is 2n/2+1 which is easily obtained from certain power functions xd.

3 Nonexistence of Certain Classes of Permutations

There are several classes of APN functions for odd n that may be permutations
or not, while for even n there exist APN functions but none of these functions
is a permutation. It has been highly conjectured that there do not exist APN
permutation for even n [15]. The conjecture has been confirmed true for n = 4,
and for a large class of permutation polynomials P (x) =

∑2n−1
i=0 aix

i, whose
coefficients ai ∈ F2n/2 [18]. That is, given a permutation polynomial P (x) over
F2n with coefficents ai ∈ F2n/2 , it was shown that P (x) is affine on some 2-
dimensional subspace, and therefore it cannot be APN [18].

Let xd be a nonpermutation monomial over F2n , that is, gcd(d, 2n−1) = s > 1.
In general, it is an open problem when an arbitrary (non)permuting function G
becomes (remains) a permutation when a linear polynomial is added to G. For
a special case F (x) = xd + L(x), where L(x) =

∑n−1
k=0 akx2k

(ak ∈ F2) is
a linearized polynomial with binary coefficients, we show that F cannot be a
permutation.

Note that taking a nonpermuting binomial G(x) = xd + xs where d, s are not
2-power (d, s �= 2i for some i ≥ 0), we can find permutation polynomials of the
form P (x) = G(x)+L(x). One example can be found in [14], where it was proved
that for n = 2m + 1 the polynomial P (x) = x2m+1+1 + x3 + x is a permutation

On Cryptographically Significant Mappings over GF(2n) 193

polynomial on F2n . The following result shows the nonexistence of certain class
of permutation, and therefore it excludes this class as a potential candidate for
generation of APN permutations.

Theorem 1. Let F (x) = xd over the field F2n such that gcd(d, 2n− 1) = s > 1.
Then the polynomial

F (x) + L(x) = F (x) +
n−1∑
k=0

akx2k

, ak ∈ F2,

is never a permutation.

Proof. Let α denote a primitive element in F2n . It is easy to verify that the
mapping F (x) = xd, gcd(d, 2n − 1) = s > 1, is s-to-one and the image of such
a mapping consists of exactly (2n − 1)/s nonzero values, having the zero point
mapped to zero. More precisely we have,

Si = {αi, α(2n−1)/s+i, α2(2n−1)/s+i, . . . , α(s−1)(2n−1)/s+i} xd�→ αdi;

for i = 0, 1, . . . , (2n − 1)/s− 1.
Note that if F (x)+L(x) is to be a permutation then L(x) cannot be a permu-

tation, that is L(1) = 0 as otherwise 0, 1 F+L→ 0. Then a nonpermuting linearized
polynomial L with binary coefficients maps u-to-one, where u = 2v, v ≥ 1. This
is because,

L(1 + αi) = L(1) + L(αi) = L(αi), (6)

which for any αi gives that αi, 1 + αi L�→ β for some β ∈ F2n . The elements
1 + αi and αi are clearly different for any 0 ≤ i ≤ 2n − 2. There might be
some other elements, say αj , such that L(αj) = L(αi), for i �= j. Then we have
L(1 + αi) = L(αi) = L(1 + αj) = L(αj).

Now it is enough to show that the differential equation,

(x + 1)d + xd = 0, (7)

always has at least two solutions. Note that if αi is a solution of (7) then 1 + αi

is a solution as well. Then F +L cannot be a permutation since F (αi)+L(αi) =
F (1 + αi) + L(1 + αi), that is αi and αi + 1 have the same image.

Since gcd(2n − 1, d) = s > 1 we may write d = su for some u ≥ 1 and
gcd(2n − 1, u) = 1. Then the differential equation above may be written as,

[(x + 1)s]u + [xs]u = 0,

which is equivalent in terms of solutions to,

(x + 1)s + xs = 0,

as xu is a permutation on F2n . This equation is of degree s − 1 and it has at
most s− 1 solutions. Note again that solutions come in pairs, that is, if αi is a

194 E. Pasalic

solution so is 1 + αi. We show that (1 + αj(2n−1)/s)−1 is the set of solutions for
j = 1, . . . , s− 1. We have,

(x + 1)s + xs = 0⇔
(x + 1

x

)s

+ 1 = 0⇔ 1 +
1
x

= αj(2n−1)/s; j = 1, . . . , s− 1.

This completes the proof. ��
This also implies the nonexistence of APN permutations of the form xd + L(x),
where xd is a nonpermutation polynomial and L a linearized polynomial with
binary coefficients. Note that there is no restriction on the evenness of n.

Corollary 1. There do not exist APN permutations on F2n of the form,

xd + L(x),

where gcd(2n − 1, d) > 1, and L(x) =
∑n−1

k=0 akx2k

, ak ∈ F2.

Example 1. For odd n we know that x3 is an APN permutation. The APN
property of the function x3 is preserved for even n but then this function is not
a permutation, as 3|2n − 1. Since x3 is APN then so is x3 + L(x) for a linear
polynomial with binary coefficients. However the above Theorem guarantees that
it cannot be a permutation.

The general case concerning L(x) with the coefficients from F2n seems to be
harder to analyze. The difficulty comes from the fact that for L(x)=

∑n−1
k=0 akx2k

,
ak ∈ F2n , the right-hand side in (6) is not valid as L(1) = β �= 0. Then using
the same approach as taken in the proof of Theorem 1 would lead to showing
the existence of solutions to,

(x + α)d + xd = β,

where β is dependent on the choice of the coefficients ak in L(x). A thorough
treatment for the general case of ak ∈ Fk

2 is left to the extended version of this
paper.

Notice that proving the general case would formally disprove the conjecture
stated in [6]. This conjecture claims that given any AB function F there exist a
linear function L such that F + L is a permutation. A counterexample for this
conjecture has already been found [5], for a certain AB function over F25 .

Remark 1. The property of being permutation is invariant under the multipli-
cation by a nonzero constant, that is F is a permutation if and only if γF is,
γ ∈ F∗

2n . Since the coefficient of xd +L(x) are binary, the result of Corollary 1 is
only a special case of the Hou’s result [18] up to the multiplication by a constant.

3.1 An Example of Recursive Construction of APN Permutations

For an arbitrary mapping F : F2n → F2n there always exist I/O equations of
degree t (and algorithms for finding these equations), where the value of t is
computed as given below [19].

On Cryptographically Significant Mappings over GF(2n) 195

Proposition 1. For any mapping y = F (x) where F : Fn
2 �→ Fn

2 there exists al-
gebraic equation(s) of degree t over F2 (in indeterminates x1, . . . , xn, y1, . . . , yn),
where t < 	n/2
 is the least positive integer satisfying,

t∑
i=0

(
2n

i

)
> 2n. (8)

Furthermore, a tight lower bound on t is given by, t ≥ 	n/4
+ 1.

For instance, this bound implies that for a symmetric S-box of size n = 7 or
n = 8 there always exist cubic I/O equations which describe given S-box. The
inverse S-box of the AES (n = 8) admits quadratic I/O equations and therefore
it is not optimized with respect to so-called algebraic immunity.

To preserve good differential and linear properties, we may attempt to find
instances (or classes) of polynomials derived from power monomials that have
better algebraic properties than power monomials. It is well-known that the
differential and linear properties of the power permutation F (x) = xd are the
same as for x2d, x4d, . . . , x2n−1

or for the inverse coset x−d, x−2d, . . . , x−2n−1
.

While x2id is of the same algebraic degree as xd, this is not the case for the inverse
cyclotomic coset as x−2id has in general different algebraic degree than xd. The
linear and inverse transformation may be then unified in so-called extended affine
equivalence (EA equivalence) so that F and F ′ are EA-equivalent if F ′ = A1 ◦
F ◦ A2 + A for some affine permutations A1, A2 and affine function A. The
equivalence also includes the inverse coset by replacing F with F−1.

A more general framework was first introduced in [6], where the transforma-
tion is performed rather to the graph of functions. Then F, F ′ : F2n → F2n

are called CCZ-equivalent, terminology introduced in [5], if the sets GF =
{(x, F (x))|x ∈ F2n} and GF ′ = {(x, F ′(x))|x ∈ F2n} are affine equivalent. It
was shown in [6] that EA-equivalence is a particular case of CCZ-equivalence,
and furthermore both equivalence relations preserve (up to permutation) the
differential table and the extended Walsh spectra. Furthermore, the strength to
algebraic cryptanalysis (admittance of low degree I/O equations) is invariant to
both equivalence relations. Nevertheless, certain classes of AB (APN) functions
derived by applying the CCZ transformation cannot be obtained via classical
EA-equivalence [4].

This approach has been successfully used in [3] where the authors conjectured
that all functions obtained from an implicitly defined mapping,

x3 + x2 + x→ x

are not EA-equivalent to any power monomial over the field F2n , for odd n ≥ 3.
Later this statement was corrected not to hold over F23 due to the small size of
the field [20].

In the rest of this section we propose a recursive method of constructing the
APN permutations; a method derived from the implicit mapping x3+x2+x→ x.
Note that the Lagrange interpolation for the mapping x3 + x2 + x→ x over F23

gives the function,
g′(x) = x5 + x4 + x.

196 E. Pasalic

This implicit mapping should not be confused with inverse mapping so that
g(x) = (x3 + x2 + x)−1 mod x2n

+ x. It is rather a compositional operator that
satisfies g(f(x)) = x. For f(x) = x3 + x2 + x the function g(x) = x5 + x4 + x
indeed satisfies that g(f(x)) = x which can be verified by computing

(x3 + x2 + x)5 + (x3 + x2 + x)4 + (x3 + x2 + x) ≡ x (mod x8 + x).

Then if we consider the same implicitly defined mapping x3 + x2 + x→ x over
the field F25 , one computes its explicit form as,

g(x) = x21 + x20 + x17 + x16 + x5 + x4 + x. (9)

Then we can deduce that g(x) = x16(g′(x)+1)+g′(x) holds. This however gives
a general recursion that relates the function g′ : x3 + x2 + x → x on F22k−1 to
the function g : x3 + x2 + x→ x on F22k+1 , k ≥ 2, as follows,

g(x) = x22k

(g′(x) + 1) + g′(x).

It can be verified that the iteration formula generates the same function over
F22k+1 as the function computed using the Lagrange interpolation of implicit
mapping x3 + xx + x → x for all F22k+1 of practical computational complexity.
A rigorous mathematical proof that relates the Lagrange interpolation formula
with the simple recursion above is left as an open problem. Nevertheless, we
note that the algebraic degree is increased by one in each step of iteration.
This is easily verified by noting that degp(g′) < 22k−1, thus multiplying g′(x)
by x22k

will increase the algebraic degree of g′ exactly by one. However, we
must restrict ourselves to consider polynomials g′ with binary coefficients since
F22k−1 �⊆ F22k+1 and therefore g is not well defined.

Remark 2. In accordance with Proposition 1 the function g over F25 given by (9)
should admit a quadratic dependence between x and y. Indeed, one can verify that
y+g(x) = 0 gives quadratic algebraic relation (after multiplication with x16 +1),

y(x16 + 1) = g(x)(x16 + 1) = g′(x)(x + 1) + x + x16 = x16 + x6 + x4 + x2,

where g′(x) = x5 + x4 + x.

The Lagrange interpolation of an implicit mapping defined by x3 + x2 + x→ x
over F27 yields the following polynomial,

g(x) = x85 + x84 + x81 + x80 + x69 + x68 + x65 + x64 +
+ x21 + x20 + x17 + x16 + x5 + x4 + x.

This polynomial is of algebraic degree 4 (as wt(85) = 4), and it is derived from
a cubic function x3, thus it is a maximally nonlinear APN permutation.

On Cryptographically Significant Mappings over GF(2n) 197

Proposition 2. Let g′(x) be the compositional inverse mapping of x → x3 +
x2+x over F22k−1 . Then the compositional inverse mapping of the same function
over F22k+1 is defined by,

g(x) = x22k

(g′(x) + 1) + g′(x), (10)

and it has the same differential and linear properties as g′ and deg(g)=deg(g′)+ 1.

This seems to be a peculiar property of the mapping x→ x3 +x2 +x. In general
the recursion above does not guarantee that for a given permutation polynomial
g′ the polynomial g is also a permutation. Since deg(g) = m+1

2 which correspond
to the algebraic degree of the inverse coset of Gold mapping F (x) = x2k+1 (with
gcd(n, k) = 1) [23], the conjecture on EA-inequivalence of this class of functions
in [3] cannot be settled by comparing the algebraic degrees.

Open Problem 1. Show that the mapping g as defined above is EA-inequivalent
to power mappings, in particular to Gold-like mapping x→ x3. In addition, explain
why the permutation and APN (AB) property of the input function g′ are preserved
when the recursion above is applied.

4 Some Properties of Polynomials in
F[x, y]/(x2n

+ x, y2n
+ y)

As discussed in the previous section it is of interest to consider certain algebraic
properties of the functions in the ring of multivariate polynomials R[x, y] =
F[x, y]/(x2n

+ x, y2n

+ y), where F = F2n . Our major concern is the polynomial
of the form y + P (x) = 0, for which we investigate its algebraic degree under
certain transformation applied to such a polynomial. That is, for a given function
y = P (x), x, y ∈ Fn

2 we consider a multivariate polynomial in indeterminates x, y
in the form F ′(x, y) = y + F (x) = 0.

Theorem 2. Let y + P (x) be a polynomial in the ring R[x, y], and let

min
S(x)∈F[x]/x2n+x

deg{yS(x) + P (x)S(x)} = deg{yQ(x) + P (x)Q(x)}. (11)

Then,
deg{yQ(x) + P (x)Q(x)} ≤ deg{yT (x, y) + P (x)T (x, y)}, (12)

for any T (x, y) ∈ R[x, y] such that T is strictly a function of both x and y.

Proof. Let T (x, y) denote a polynomial in R[x, y] which minimizes the algebraic
degree of yU(x, y) + P (x)U(x, y), U ∈ R[x, y]. Then we may write,

T (x, y) = T0(x) + yT1(x) + . . . + y2n−1T2n−1(x),

198 E. Pasalic

where Ti(x) = a0,i + a1,ix + . . . + a2n−1,ix
2n−1, for aj,i ∈ F2n . Hence,

yT (x, y) + P (x)T (x, y) = y[T0(x) + yT1(x) + . . . + y2n−1T2n−1(x)] +
+ P (x)[T0(x) + yT1(x) + . . . + y2n−1T2n−1(x)] =
= T0(x)P (x)︸ ︷︷ ︸

K0(x)

+y [T0(x) + T2n−1(x) + T1(x)P (x)]︸ ︷︷ ︸
K1(x)

+

+ . . . + y2n−1 [T2n−2(x) + T2n−1(x)P (x)]︸ ︷︷ ︸
K2n−1(x)

=

= K0(x) + yK1(x) + . . . + y2n−1K2n−1(x).

The terms in the last expansion are distinct, so the algebraic degree of yT +PT
is given as the maximum degree of the above terms. Let yiKi(x) be the term of
the highest degree. Assume now that for any function Q(x) ∈ F[x]/x2n

+ x it is
true that

deg{yQ(x) + P (x)Q(x)} > deg{yiKi(x)}.
Let now the algebraic degree of yQ(x) + P (x)Q(x) be governed by yQ(x), that
is deg{yQ(x)} ≥ deg{P (x)Q(x)}. Then we may take Q(x) := Ki(x) which leads
to a contradiction unless i = 0. When i = 0 we get that K0(x) has a maximum
degree among all yiKi(x), i = 0, . . . , 2n − 1. This means that,

deg{K0(x) + yK1(x)} = deg{K0(x)} < deg{yQ(x) + P (x)Q(x)} = deg{yQ(x)}.

This again leads to a contradiction as we may select Q(x) := K1(x) which
gives that,

deg{yK1(x)} ≤ deg{K0(x)} < deg{yK1(x)}.
It remains to consider the case when deg{P (x)Q(x)} ≥ deg{yQ(x)}. We again
assume that for the highest degree term yiKi(x) we have deg{P (x)Q(x)} >
deg{yiKi(x)}. Now the case i = 0 is trivial because assigning Q(x) := T0(x)
gives the equality in the above equation. So, i > 0 and then by assumption we
have,

deg{K0(x)} ≤ deg{yiKi(x)}; i > 0.

But taking Q(x) := T0(x) implies that deg{P (x)Q(x)} = deg{K0(x)} which
leads again to a contradiction. ��
Corollary 2. Let y +P (x) be a polynomial in R[x, y] such that deg{P (x)} ≥ 3.
Then, to check whether there are polynomials of the form yQ(x, y)+P (x)Q(x, y)
of algebraic degree less than 3 it is enough to consider Q as being a univariate
polynomial in x.

Moreover, if yQ(x) +P (x)Q(x) is to be of algebraic degree 2, then Q(x) must
be affine polynomial of the form,

Q(x) = c0 + a0x + a1x
21

+ . . . + an−1x
2n−1

; c0, ai ∈ F2n .

On Cryptographically Significant Mappings over GF(2n) 199

Proof. The first part of the statement follows directly from Theorem 2. The
second part is proved by noting that

deg{yQ(x) + P (x)Q(x)} = max{deg{yQ(x)}, deg{P (x)Q(x)}}.

Thus for a nonconstant polynomial Q we have deg{yQ(x)+P (x)Q(x)} ≥ 2. ��
Remark 3. Notice that we can find polynomials T (x, y) which gives the same
algebraic degree as Q(x) when the equation (y+P (x))T (x, y) is compared to (y+
P (x))Q(x) with respect to degree. Hence for finding more independent equations
of certain degree we also have to consider the multiplication with T (x, y) as well.
A good example is the inverse function y = x−1. Then multiplying with x2 gives
yx2 + x = 0 which is of algebraic degree 2, but also multiplication with e.g. x2y
gives x2y2 + xy = 0, a quadratic equation as well.

A quadratic dependence between x and y may also be obtained through the op-
eration of exponentiating, that is yd = P (x)d may give quadratic equations for
suitably chosen d. In certain cases the multiplication cannot yield a quadratic de-
pendence while through the powering operation one obtains such a dependence.
An excellent example is the Kasami APN power monomial x22k−2k+1 over the
field F2n , where gcd(k, n) = 1, k > 1. Then it was verified that y = x22k−2k+1

does not yield any quadratic equation under the multiplication with some affine
polynomial Q(x). On the other hand taking the (2k + 1)th power of the equa-
tion y = x22k−2k+1 will give y2k+1 = x23k+1 which is a quadratic equation in
x, y, see [8]. In the next section we combine the two operations of multiplication
and squaring to derive a computationally efficient algorithm for computing low
degree I/O relations.

4.1 A Fast Algorithm for Finding Low Degree I/O Equations for
Sparse Polynomials over F2n

For the reasons of efficient implementation (table look-up approach) S-box map-
pings are often chosen to work on a byte level, e.g. the S-boxes of AES are
defined as the inverse function in the field F28 [12]. An efficient implementa-
tion can also be achieved for S-boxes of larger size provided that the defining
polynomial S(x) ∈ F2n [x] is efficiently computed ideally both in software and
hardware. The choice of large-sized S-boxes has definitely certain advantages
over its small-sized counterparts, as cryptographically stronger mappings can be
found in larger ambient spaces.

Assuming we are given a sparse polynomial P (x) over F2n (the sparseness
being induced for the reasons of efficient implementation) we might be inter-
ested in the set of all linearly independent low degree I/O equations. Thus the
problem is to determine this set in a fast and efficient manner, which is of spe-
cial importance for large fields. Currently 2, the best known algorithm [13] for

2 Another competitive candidate [1] has a slightly lower time complexity O(D2) but
a significantly larger memory consumption.

200 E. Pasalic

finding low degree annihilators for Boolean function (which is applicable to I/O
relations as well) has a time complexity O(n2nD) and requires O(n2n) memory,
where D =

(
n
d

)
. For instance if n = 32, d = 3, the time and memory complexity

are 249 and 237 respectively.
For simplicity, the algorithm that follows considers only the existence of

quadratic I/O equations. The concept is easily generalized for any small pre-
specified value 2 ≤ d" n. Note that for any polynomial y + P (x) = 0 over the
field F2n the quadratic relationship in x and y, if it exists, can be written as,

α+
∑

i

aix
2i

+
∑

j

biy
2i

+
∑
i,j

ci,jy
2i+2j

+
∑
i,j

di,jx
2i+2j

+
∑
i,j

ei,jx
2i

y2j

= 0, (13)

where 0 ≤ i, j ≤ n− 1 and ai, . . . ei,j , α ∈ F2n .
Let y = P (x) be a given polynomial (not necessarily permutation) over the

field F2n . Throughout this section we let Q(x) denote a quadratic polynomial in x
over F2, that is, Q(x) =

∑
i αix

di , where αi ∈ F2n and wt(di) ≤ 2. Also, NQ(x)
will denote a polynomial whose monomials are of degree greater than 2. Then
we introduce the degree ordering so that all terms of any polynomial satisfy the
following rule. The term αix

di comes before the term αjx
dj if wt(di) > wt(dj).

In the case that wt(di) = wt(dj) then the deciding rule is di > dj . For instance
P (x) = x12 + x11 + x8 + x3 is then written as P (x) = x11 + x12 + x3 + x8,
and accordingly NQ(x) = x11, Q(x) = x12 + x3 + x8. Let us consider the set of
polynomials

{yd = P (x)d; 1 ≤ d ≤ 2n − 1, 1 ≤ wt(d) ≤ 2},
for all of which we may write yd = NQ(d)(x) + Q(d)(x). Then if NQ(d)(x) = 0
the polynomial y + Q(x) ∈ R[x, y] gives rise to quadratic equations over F2.
When NQ(d)(x) �= 0 then we express the leading term αxu of NQ(d)(x) as,

xu = α−1(yd + NQ′
(d)(x) + Q(d)(x)),

where NQ′
(d)(x) = NQ(d)(x) − αxu. This gives n + n(n − 1)/2 equations (for

all d s.t. 1 ≤ wt(d) ≤ 2) that express the higher degree terms via lower degree
polynomials. The only thing we should be concerned about is not to replace
the leading monomial if it has already been replaced in some previous step. We
proceed in the same manner by computing y2i

x2j

= P (x)2
i

x2j

which gives n2

new equations. Hence in total we get n +n(n− 1)/2+n2 equations that replace
the high degree terms with low degree terms.

This approach is in accordance with the general expression given by (13). That
is, the operations of powering and multiplication by x2i

will give the terms of the
following forms y2i

, y2i+2j

, x2i

y2j

which covers the three sums in (13), whereas
the quadratic functions Qi(x) stands for the remaining two sums. Also, note that
we need not take into account the equations of the form yd(x)A(x) = P d(x)A(x)
as they only give linearly dependent equations of the form,

(y(x)d + P (x)d)a0 + (y(x)d + P (x)d)a1x
20

+ · · ·+ (y(x)d + P (x)d)anx2n−1
= 0.

On Cryptographically Significant Mappings over GF(2n) 201

Input: An arbitrary function P : F2n → F2n .
1. For i = 0, . . . , n − 1 compute

y2i

= P (x)2
i

= NQ(i)(x) + Q(i)(x)

Sort and express the highest degree term xu as:

xu = α−1(y2i

+ NQ′
(i)(x) + Q(i)(x)); NQ′

(i)(x) = NQ(i)(x) − αxu.

2. For 0 ≤ i, j ≤ n − 1, i �= j compute:

y2j+2i

= P (x)2
j · P (x)2

i

= NQ(j,i)(x) + Q(j,i)(x),

Sort and express the highest degree term xu in NQ(j,i)(x) as above
Express, if possible, high degree monomials (including xu) with Qk(x, y)
If all nonquadratic terms may be expressed with some Q(j,i)(x, y) output
quadratic function Q(x, y) = 0.

3. For 0 ≤ j, k ≤ n − 1, compute:

y2j

x2k

= P (x)2
j

x2k

= NQ(j,k)(x) + Q(j,k)(x).

Repeat the same computation as in the step 2.

Fig. 1. Algorithm for finding quadratic equations over a field

Below we depict the formal steps of the algorithm. Due to the lack of space a
small example describing how the algorithm works is given in the Appendix.
Assuming that P (x) is sparse, containing k " 2n terms, the time complexity of
our algorithm is as follows. For convenience, we assume that the input to the
algorithm is a polynoimal P (x) with binary coefficients. In this way we sub-
stantially simplify the analysis leaving the complexity estimate for the arbitrary
form of P to the extended version of this paper. However, the polynomials with
binary coefficents are of particular interest for efficient implementations.

Each exponentiation of the form P (x)2
i

takes kn operations, and in addition
k operations for sorting. The exponentiation estimate is justified by noting that
computing (xej)2

i

= xej2i

mod x2n

+ x (for any monomial xej ∈ P (x)) corre-
sponds to computing ej2i mod 2n− 1. Representing ej as a binary n-bit integer
this modular multiplication with 2i is equivalent to a left circular shift of ej with
i bit positions. For instance, computing ej2i = 7 · 8 ≡ 25 (mod 31) over F25 is
performed as ej = (0, 0, 1, 1, 1)→ (1, 1, 0, 0, 1). Therefore, computing P (x)2

i

for
i = 0, . . . , n−1 takes n2k operations. Similarly, P (x)2

i+2j

= P (x)2
i ·P (x)2

j

takes
k2n operations of simple modulo 2n− 1 additions of exponents, and k2 for sort-
ing. Thus, in total

(
n
2

)
(k2n + k2) operations are performed. Finally, computing

n2 multiplications P (x)2
i

x2j

, i, j = 0, . . . , n−1, requires n2k modular additions.
The complexity of this step is therefore n3k, and in addition n2k operations are
needed for sorting.

202 E. Pasalic

Thus, for d = 2 the time complexity TC is dominated by the second and third
step of algorithm,

TC ≈ O(n3k2).

This is a polynomial running time algorithm for small k, and for instance if k ≈ n
then TC = O(n5). On the other hand, for a random polynomial P (x) ∈ F2n [x]
the expected value of k is 2n−1 so that TC = O(n322n), which is larger than
O(n2nD), D =

(
n
2

)
. But these classes of functions, containing many monomials,

are definitely of no interest in cryptographic applications.
A generalization for finding I/O equations of degree d > 2 is straightforward.

In this case the term dominating the total complexity is the evaluation of the
terms y2j1

y2j2 · · · y2jd as kd multiplications are needed. The complexity of our
algorithm is then well approximated by Tc ≈ O(nd+1kd), which is still much
smaller compared to O(nd+12n) (using D =

(
n
d

) ≈ nd) for relatively small d.

5 Conclusions

In this paper we have addressed some important issues related to the properties
of cryptographically significant mappings over finite fields. It would be of interest
to get a deeper unerstanding for the recursive procedure of APN permutations
given in Section 3.1, and to further investigate the possibility of other recursive
methods in this context.

References

1. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer,
Heidelberg (2006)

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

3. Breveglieri, L., Cherubini, A., Macchetti, M.: On the generalized linear equiva-
lence of functions over finite fields. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 79–91. Springer, Heidelberg (2004)

4. Budaghyan, L.: The simplest method for constructing APN polynomials EA-
inequivalent to power functions. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS,
vol. 4547, pp. 177–188. Springer, Heidelberg (2007)

5. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Trans. on Inform. Theory IT-52(3), 1141–1152 (2006)

6. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2), 125–
156 (1998)

7. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

8. Cheon, J.H., Lee, D.H.: Resistance of S-boxes against algebraic attacks. In: Roy,
B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 83–94. Springer, Heidelberg
(2004)

On Cryptographically Significant Mappings over GF(2n) 203

9. Courtois, N.: Higher order correlation attacks, XL algorithm and cryptoanalysis
of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

10. Courtois, N., Debraize, B., Garrido, E.: On exact algebraic [non-]immunity of S-
boxes based on power functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP
2006. LNCS, vol. 4058, pp. 76–86. Springer, Heidelberg (2006)

11. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

12. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Berlin (2002)

13. Didier, F.: Using Wiedemann’s algorithm to compute the immunity against al-
gebraic and fast algebraic attacks. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 236–250. Springer, Heidelberg (2006)

14. Dobbertin, H.: Almost perfect nonlinear power functions on GF (2n): The Welch
case. IEEE Trans. on Inform. Theory IT-45(4), 1271–1275 (1999)

15. Dobbertin, H.: Almost perfect nonlinear power functions over GF (2n): The Niho
case. Inform. Comput. 151, 57–72 (1999)

16. Faugère, J.-C.: A new efficient algorithm for computing Gröbner basis without
reduction to 0 F5. In: Proceedings of ISSAC 2002, pp. 75–83. ACM Press, New
York (2002)

17. Fraenkel, S.A., Yesha, Y.: Complexity of problems in games, graphs, and algebraic
equations. Discr. Appl. Math. 1, 15–30 (1979)

18. Hou, X.D.: Affinity of permutations of F2n . Discr. Appl. Math. vol. 154(2), 313–325
(2006)

19. Knudsen, L.R.: Quadratic relations in Khazad and Whirlpool. NESSIE report
NES/DOC/UIB/WP5/017/1 (2002)

20. Macchetti, M.: Addendum to On the generalized linear equivalence of functions
over finite fields. Cryptology ePrint Archive, Report2004/347 (2004),
http://eprint.iacr.org/

21. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

22. Murphy, S., Robshaw, M.: Essential algebraic structure within the AES. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

23. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

24. Shamir, A., Patarin, J., Courtois, N., Klimov, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

Appendix

Example 2. Let us again consider the function y = g(x) over F25 given by,

g(x) = x21 + x20 + x17 + x16 + x5 + x4 + x,

which is of algebraic degree d = 3. As we already remarked

y(x16 + 1) = g(x)(x16 + 1) = g′(x)(x + 1) + x + x16 = x16 + x6 + x4 + x2,

204 E. Pasalic

where g′(x) = x5 + x4 + x. This quadratic algebraic equation was obtained using
the special form of g. Of course there might be other quadratic equations and we
check for these applying our algorithm; these will be indicated by ∗

y = x21 + x20 + x17 + x5 + x16 + x4 + x; ⇒ x21 = y + Q0(x),

y2 = x11 + x10 + x9 + x3 + x8 + x2 + x; ⇒ x11 = y2 + Q1(x),

y4 = x22 + x20 + x18 + x6 + x16 + x4 + x2; ⇒ x22 = y4 + Q2(x),

y8 = x13 + x12 + x9 + x5 + x8 + x4 + x; ⇒ x13 = y8 + Q3(x),

y16 = x26 + x24 + x18 + x10 + x16 + x8 + x2; ⇒ x26 = y16 + Q4(x),

∗ y3 = x21 + x11 + Q5(x); ⇒ y3 = y + Q0(x) + y2 + Q1(x) + Q5(x),

∗ y5 = x22 + x21 + Q6(x); ⇒ y5 = y4 + Q2(x) + y + Q0(x) + Q6(x),

∗ y6 = x22 + x11 + Q7(x); ⇒ y6 = y4 + Q2(x) + y2 + Q1(x) + Q7(x),

∗ y9 = x21 + x13 + Q8(x); ⇒ y9 = y + Q0(x) + y8 + Q3(x) + Q8(x),

∗ y10 = x13 + x11 + Q9(x); ⇒ y10 = y8 + Q3(x) + y2 + Q1(x) + Q8(x),

∗ y12 = x22 + x13 + Q10(x); ⇒ y12 = y4 + Q2(x) + y8 + Q3(x) + Q10(x),

∗ y17 = x26 + x21 + Q11(x); ⇒ y17 = y16 + Q4(x) + y + Q0(x) + Q11(x),

∗ y18 = x26 + x11 + Q12(x); ⇒ y18 = y16 + Q4(x) + y2 + Q1(x) + Q12(x),

∗ y20 = x26 + x22 + Q13(x); ⇒ y20 = y16 + Q4(x) + y4 + Q2(x) + Q13(x),

∗ y24 = x26 + x13 + Q14(x); ⇒ y24 = y16 + Q4(x) + y8 + Q3(x) + Q14(x),

∗ yx = x22 + x21 + Q15(x); ⇒ yx = y4 + Q2(x) + y + Q0(x) + Q15(x),

...

Remark that the maximum number of linearly independent quadratic equa-
tions over F2 for n = 5 is

(
10
2

)
= 45, it is the number of terms of the form

xixj , yiyj, xiyj . Exceeding this number would imply the existence of linear I/O
equations which is not possible.

Author Index

Aslan, Bora 123

Baktır, Selçuk 47
Bulus, Ercan 123

Caruso, Fabrizio 62

D’Aurizio, Jacopo 62
Duquesne, Sylvain 174

Fan, J. 77

Geil, Olav 157

Hamahata, Yoshinori 11
Hariri, Arash 103
Hasan, M. Anwar 88
Horadam, K.J. 134

Joye, Marc 36

Knežević, M. 77
Kyureghyan, Gohar M. 117

Matsumoto, Ryutaroh 157
McAndrew, Alasdair 62
Meletiou, Gerasimos C. 1
Mouffron, Marc 19

Negre, Christophe 88

Pasalic, Enes 189
Pott, Alexander 117

Reyhani-Masoleh, Arash 103

Sakalli, M. Tolga 123
Sakiyama, K. 77
Sunar, Berk 47

Thomsen, Casper 157

Vega, Gerardo 144
Verbauwhede, I. 77

Winterhof, Arne 1

	Title Page
	Preface
	Organization
	Table of Contents
	Interpolation of the Double Discrete Logarithm
	Introduction
	Subgroups of Finite Prime Fields
	Subgroups of Arbitrary Finite Fields
	Elliptic Curves
	Elliptic Curves over Fields of Prime Order
	Non-supersingular Elliptic Curves over Finite Fields of Characteristic 2

	References

	Finite Dedekind Sums
	Introduction
	Lattices
	Finite Dedekind Sums
	ReciprocityLaw
	Proof of Theorem 1
	Concluding Remarks
	References

	Transitive q-Ary Functions over Finite Fields or Finite Sets: Counts, Properties and Applications
	Introduction
	Definitions – Notations
	Definitions on Group Theory and Functions
	Definitions on Partitions

	Counts on Transitive Functions
	Partitions Counting
	Permutations Groups and Orbits
	The n-i Transitive Functions
	The Symmetric Functions
	The Alternating Functions
	The (Sharply) t-Transitive Functions
	The Rotation Symmetric Functions
	The Functions with Dihedral Symmetry Group

	Balance Property
	Balanced Symmetric Functions
	t-Transitive Balanced q-Ary Functions
	Sharply Transitive Balanced Functions
	Degree of Transitive Balanced Boolean Functions

	Implementation Issues and Solutions
	q-Ary Decision Diagrams Implementation
	Size of ODD of q-Ary Symmetric Functions
	Applications

	Conclusion
	References

	Fast Point Multiplication on Elliptic Curves without Precomputation
	Introduction
	Elliptic Curve Arithmetic
	Coordinate Systems
	Point Addition
	Point Multiplication

	Boosting the Performance
	Precomputation
	Special Cases
	Signed-Digit Representation

	Fast Right-to-Left Point Multiplication
	Coordinate Systems
	Mixed Representations
	Right-to-left Methods

	Conclusion
	References

	Optimal Extension Field Inversion in the Frequency Domain
	Introduction
	Background
	OEFs and Their Arithmetic
	OEF Arithmetic in the Frequency Domain

	Itoh-Tsujii Inversion in the Frequency Domain
	Conclusion
	References

	Efficient Finite Fields in the Maxima Computer Algebra System
	Introduction
	The Algorithms
	Basic Arithmetic Operations
	Exponentiation
	Primitive Element
	Discrete Logarithm
	Minimal Polynomials
	Square Roots in Fp
	Cube Roots in \mathbb{F}_p
	Generalized Shanks Algorithm for k-th Roots

	The Library
	Loading
	Defining a Finite Field
	Basic Operations
	Primitive Elements, Powers and Logarithms
	Modular Roots

	Applications
	Performance and Comparisons
	Future Plans
	References

	Modular Reduction in GF(2^{n}) without Pre-computational Phase
	Introduction
	Related Work
	Modular Multiplication with Barrett Reduction
	Modular Multiplication with Montgomery Reduction
	Shortcomings of the Existing Algorithms

	The Proposed Modular Reduction Method
	Mathematical Background
	Barrett Reduction without Pre-computation
	Montgomery Reduction without Pre-computation

	Hardware Implementation of the Proposed Algorithm
	Conclusions and Future Work
	References

	Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation
	Introduction
	Dickson Polynomials
	Asymptotic Complexities of Toeplitz Matrix Vector Product
	Field Multiplication Using Low Weight Dickson Polynomials
	Irreducible Dickson Binomials
	Dickson Trinomials

	Complexity and Comparison
	Conclusion
	References

	Digit-Serial Structures for the Shifted Polynomial Basis Multiplication over Binary Extension Fields
	Introduction
	Preliminaries
	Digit-Serial Shifted Polynomial Basis Multiplication
	The MSD-First Digit-Serial SPB Multiplier
	Hybrid Digit-Serial SPB Multiplication

	Discussion and Comparison
	Conclusions
	References

	Some Theorems on Planar Mappings
	Introduction
	EA- and CCZ-Equivalence
	On the Image Set of a Planar Mapping
	References

	Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings from the Point of DDT and LAT Distributions
	Introduction
	Mathematical Background and Definitions
	Classification of Power Functions in GF(2^{8})
	Conclusions
	References

	EA and CCZ Equivalence of Functions over GF(2^{n})
	Introduction
	Transversals and Graphs
	Equivalence of Transversals and Graphs
	Transversals and Bundles
	References

	On the Number of Two-Weight Cyclic Codes with Composite Parity-Check Polynomials
	Introduction
	Some Already Known Results
	Some Preliminary Results
	A Lower Bound
	SomeExamples
	Conclusion
	References

	On Field Size and Success Probability in Network Coding
	Introduction
	Preliminary
	Computation of the Minimum Field Size
	Computation of the Success Probability of Random Linear Network Coding
	The Bound by Ho et al.
	Examples
	The Topological Meaning of |M_{t}|
	References

	Montgomery Ladder for All Genus 2 Curves in Characteristic 2
	Introduction
	Montgomery Ladder on Elliptic Curves in Characteristic 2
	Background on Genus 2 Curves in Characteristic 2
	Arithmetic of Genus 2 Curves
	Classification of Genus 2 Hyperelliptic Curves over $\mathbb {F}_2^{d}$

	The Kummer Surface in Characteristic 2
	Formulas for Addition and Doubling
	Formulas for Curves of Type Ia
	Formulas for Curves of Type Ib
	Formulas for Curves of Type II
	Comparison with Usual Algorithms for Scalar Multiplication
	Comparison with Elliptic Curves
	Comparison with Gaudry-Lubicz Formulas

	Conclusion and Prospects
	References

	On Cryptographically Significant Mappings over GF(2^{n})
	Introduction
	Preliminaries
	Nonexistence of Certain Classes of Permutations
	An Example of Recursive Construction of APN Permutations

	Some Properties of Polynomials in $\mathbb {F}[x, y]/(x^{2}^{n} + x, y^{2}^{n} + y)$
	A Fast Algorithm for Finding Low Degree I/O Equations for Sparse Polynomials over $\mathbb {F}_2^{n}$

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

